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Preface

This is aDRAFT book manuscript about measuring social science concepts.
The current version is rife with grammatical errors, inconsistent UK and US
spelling, infelicities of language and mathematical expression, missing citations,
hideous regression outputs, and other rough edges. The last five chapters are
missing entirely. Feedback and suggestions to (b.lauderdale@ucl.ac.uk) are very
much welcome, ideally more on the content than on the writing at this stage.

This book aims to fill a niche in the range of social science methods texts
that is (in the author’s opinion) both important and largely vacant. That niche
is defined by two important distinctions: between measurement and other
kinds of inference (both population and causal), and between pragmatic and
representationalmeasurement (Hand, 1996).

The vast majority of applied statistics texts have historically been focused on
population inference: making claims about populations on the basis of samples
from those populations. There is a growing collection of good applied texts on
causal inference written in the last fifteen years. There is not, to my knowledge,
even one applied text on the practical challenges of measurement as such, even
though there are lots of texts that cover statistical models that are often used
for measurement. There is one recent book on some of the conceptual issues
with the kind of measurement I will be exploring (Goertz, 2020) as well as
some older classics (eg Blalock, 1982).

Few applied statistics textbooks cover measurement at all, they tend to
assume that the origin of the numbers which will be the object of analysis
is a solved problem. Others cover representationalmeasurement methods—
eg survey sampling design or ecological inference—where we are aiming to
quantitatively measure a well-defined attribute of the world, how many units
are there of a given type, with more or less adequate data. What is missing is
coverage of the methodological issues involved in pragmaticmeasurement,
where we are to some extent inventing—or at least conceptualising—the target
concept of measurement at the same time that we conduct the measurement. A
great deal of social science measurement is of this type and it presents its own
distinctive challenges. These are the subject of this book.

The set of existing textbooks with which the book most closely overlaps
are those that cover multivariate summary methods (eg principle components
analysis) and latent variable models (eg factor analysis). These are also a subject

mailto:b.lauderdale@ucl.ac.uk
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of this book, but are motivated differently than they are elsewhere. Here, latent
variable models and related summary methods are pragmatic methods used for
exploratory measurement in the absence of better data that would allow you to
reliably define the target concept that you wish to measure. Ideally we would
have relevant data that could more definitively link indicators to the concepts
that we want to measure.

The first half of this book covers the various kinds of “supervision” that
we can use to explicitly specify the connections between the target concepts
we want to measure and the indicators that we have actually collected. In the
second half, we turn to the “unsupervised” methods that are often used when
researchers are a bit less clear about what they want to measure, or otherwise
lack the data necessary to use supervised methods. Covering supervised mea-
surement before unsupervised measurement makes it clearer that the “fancier”
models involved in the latter replace substantive information about the rela-
tionships between indicators and the target concept that we wish to measure
with the (often naive) hope that the target concept is the thing that maximises
explained variation in the set of indicators.

Prerequisites

To make sense of this book, at a minimum you will need to be comfortable
with linear regression and binary logistic regression. In particular, you need to
be very comfortable thinking about linear and additive functions of variables. I
will use ordinal logistic regression at several points, but if you are familiar with
binary but not ordinal logistic regression you should be ok. You also need to be
familiar with the basics of what I will refer to as population inference, which is
often simply called statistical inference. That is, the logic of how you can (and
cannot) make claims about a population on the basis of a sample of data from
that population. At its core, such inference asks “do I have enough evidence to
say something more general about the population or process from whence my
data came?” This is a question that is relevant at many points here.

Some additional topics are useful, but not strictly required. Understanding
causal inference is useful conceptually for thinking about both the origins
of and consequences of measurement error, although it is not necessary to
understand most of the material in this book.1 If you have no familiarity with 1 That said, causal inference is more impor-

tant material for most social scientists to
understand than anything that I cover in this
book.

modern causal inference, Morgan and Winship (2015) or a similar book would
be a good place to start. It would also be helpful to have some familiarity with
machine learning concepts such as regularization and cross-validation. James
et al. (2013) provides a gentle introduction to the relevant concepts, but this is
by no means necessary to understand the material in this book.

The final chapters of this book, starting with Chapter 16, will assume ad-
ditional outside material. You will need to know something about multilevel
modelling to make sense of Chapter 16. If you actually want to design new
models for specific problems, as discussed in Chapter 17, you will need some
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familiarity with the mechanics of maximum likelihood or Bayesian estimation,
which are substantial topics in themselves. However this text is not about the-
ories or practical details of statistical estimation: we will will focus on which
models and estimators to employ, and largely ignore how that estimation actu-
ally works.

Structure

Chapter 1 concerns the question of what measurement is, and how it relates to
other kinds of quantitative data analysis frequently conducted in the social sci-
ences. I also discuss some of the sordid history of social science measurement,
and the researchers who invented some of the methods covered in this book.
In Chapter 2, I develop several of the key theoretical ideas that run through
the rest of the book, in particular how the nature of the causal relationships
between the concepts that we want to measure and indicators of those con-
cepts inform how we go about measuring them. This is the chapter where
we develop definitions of (and relationships between) concepts, measures, and
indicators. The first two chapters are thus about defining the basic task and
terminology of measurement.

Chapter 3 defines measurement error and develops validity and reliability
as ways of understanding different patterns of measurement error that might
exist for any given concept-measure pair. Chapter 4 focuses on measurement
error from the perspective of individual units, and discusses questions about
which kinds of measurement errors are fair and which are unfair to the units
(eg individual people). Chapter 5 then provides illustrations of (some of) the
consequences of measurement error for aggregate analyses of data that has
been measured with error. All three chapters on measurement error are pre-
sented with a modest level of mathematical detail, an applied focus, and conse-
quently with some hand waving towards more precise treatments elsewhere.
These three chapters set the stakes for the rest of the book: what goes wrong
when we do measurement poorly and why should we care?

Chapter 6 is where we start considering how to actually construct measures.
In that chapter, we consider cases where we have theoretical logic that con-
nects one or more indicators to the target concept that we want to measure.
In these cases, we can sometimes derive a measure from the indicators, specify
axioms that a measure ought to satisfy with respect to the indicators, or use
arguments about dimensionality/units to limit the set of possible relationships
between indicators and measure.

Chapter 7 considers Bradley-Terry models for comparison/competition
data. These models are an introduction to several key ideas that recur in later
chapters, including the use of latent variable models and the distinction be-
tween measures as summary statistics versus measures as estimated model
parameters. This chapter also illustrates how creating competition data can be
a useful component of a social science measurement strategy, particularly as
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a means of translating qualitative expertise into a quantitative measurement
strategy (an idea further developed in Chapter 9).

Chapter 8 describes the use of regression as a measurement tool. This
chapter is similar to introductions to supervised learning as covered in machine
learning texts, but with a focus on the measurement properties of using fitted
values from a regression as a measure. This approach relies on the presence
of a gold standardmeasure for a(n ideally random) subset of units, in order to
supervise/train a model that predicts the target concept as well as possible using
available indicators.

Chapter 9 considers cases where such gold standard training data are un-
available, but one nonetheless wishes to construct an index of indicators to
measure some target concept. There are a tremendous number of indexes used
across academic and non-academic applications, many of which are of dubious
quality, albeit in part because these sorts of measures are difficult to construct
well. This chapter discusses the properties of these (usually linear) functions
of indicators, strategies for indicator selection, as well as how to specify and
validate the coefficients/weighting on/of indicators. Chapter 10 discusses dis-
tinctive issues related to measurement error that arise for categorical measures,
and discusses strategies for supervised measurement of categorical concepts
using supervision via (logistic) regression (analogously to Chapter 8) or using
coding rules (analogously to Chapter 9).

One very widely applied, but not always appropriate, strategy for combining
indicators into a measure is to find a simplified representation of the indica-
tors that maximises explained variation in those indicators. This principle,
in various forms, underlies a range of summary statistics and latent variable
models that are described in Chapters 11 and 12. Chapter 11 covers approaches
suitable for interval-level indicators, primarily principle components analy-
sis and exploratory factor analysis. Chapter 12 covers approaches suitable for
nominal-level and ordinal-level indicators, primarily item response theory
models. Following this, Chapters 13 and 14 provide analogous discussions for
the measurement of categorical concepts. The former covers the most widely
used techniques for unsupervised measurement of categories, including clus-
tering algorithms and also model-based methods like gaussian mixture models
for interval/ratio-level indicators, while the latter covers latent class analysis
for nominal/ordinal-level indicators.

Five further chapters have not yet been written, but will proceed roughly as
follows should they summon the will to exist. Chapter 15 will cover the hybrid
case of class mixture models, primarily Latent Dirichlet Allocation which is
used widely in the quantitative analysis of text data. The next three chapters
of will cover additional advanced topics. Chapter 16 will cover the use of hi-
erarchical or multilevelmodels in cases where one has multiple measurements
of the same quantity that one wants to combine or one does not have enough
data to form precise measures for the units of interest based on data from those
units alone. Chapter 17 will cover the development of structuralmeasurement
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models to solve novel measurement problems by describing the statistical re-
lationship between observed indicators and concepts of interest. Chapter 18
covers issues related to partially missing indicator data, covering frequently
used strategies for working with missing data and how they apply to various
methods covered throughout the book. These final three chapters should be
accessible without additional background, at least to the point of being able to
identify when these methods are relevant. Applying these techniques may re-
quire you to go learn some additional methods elsewhere. A short concluding
Chapter 19 will wrap up.

The examples in this book cover a range of social science fields, albeit with
some bias towards my own field of political science. I cannot claim to be an
expert on all of these topics. I have aimed to illustrate the methods with a range
of topics because they are genuinely widely applicable, and to make the book
widely accessible. There is a risk in this, which is that I may have failed to do
justice to the substantive considerations that should inform the application
of these methods in some of the examples. Substantive expertise is absolutely
required to do pragmatic social measurement well. Where the applications
fall short of demonstrating such expertise, I hope that readers will recognise
that there may well be ways to address these limitations, perhaps through the
use of more advanced measurement techniques than I discuss here. It is often
through the back and forth between substantive objections and methodological
innovations that measurement techniques and substantive understandings of
social science improve.

Scope

Like any textbook, this one does not cover everything that it might. What else
might you want to learn to further extend your understanding of methods for
measurement?

First, the scope of this book does not include survey sampling design or
design of survey questions. These are clearly about “measurement”, but survey
sampling design is more a representativemeasurement problem rather than
pragmatic in the sense I outline in the first chapter of the book. Probability
sampling is a well examined topic, and is about population inference not mea-
surement inference. Question wording is closer to the task here, and edges up
to some of the issues that are discussed in later chapters of this text, but is not
my primary area of expertise and has been covered well elsewhere.

For similar reasons, I have also not included a set of methods for situations
where there is a well-defined quantity which one wishes to measure, but for
reasons of data availability it cannot be directly measured. One set of such
methods are those for ecological inference, where the limitation is a lack of
individual-level data necessary to estimate an association in a population. An-
other set of such methods are small area estimation methods such as multilevel
regression and post-stratification, where the limitation is a very small num-
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ber of observations at the level of aggregation which is of interest. A third set
of such methods are list experiments and randomised response experiments
where the limitation is a (possible) inability to get truthful responses to direct
survey questions. I have excluded these from this book because these prob-
lems lack the questions about conceptualisation that are the core of this book.
These are methods where the thing you want to measure is in principle directly
measurable, but you just do not have the data. They are all characterised by
using untestable modelling assumptions to compensate for limitations of the
data, and all involve risks that these assumptions will be wrong, leading to bi-
ased measurements. These are all interesting measurement problems, some of
which I have personally worked on, but they are not quite in the scope of this
book.

Similarly, this is not a textbook on multivariate statistics or latent variable
modelling as such. Again, very good textbooks exist (Bartholomew et al., 2008)
but have a somewhat different focus than this book. Here, our focus is on the
problem of measuring pragmatically defined social science concepts; existing
textbooks are focused on multivariate statistics and their properties. There
is substantial overlap of course, and such textbooks are excellent reference
materials for mathematical details that I skip in this text. In general, this book
is oriented towards providing sufficient mathematical detail to apply methods,
not sufficient mathematical detail to implement or derive methods. Where I
skip over the underlying statistical detail, I aim to provide citations.

Structural equation models (SEMs) are not covered in this book, even
though they provide a more general framework for some of the statistical
models considered herein. Traditional structural equation models aim to
combine measurement and causal inference in a way that is in principle very
powerful, but in practice often problematic because the maintained assump-
tions are too complex to mentally engage with. Chapter 17 covers some related
material, but focusing on modelling the relationship between indicators and
target concepts rather than on introducing a general framework. If you are
interested in SEMs, there are a wide variety of textbooks to consider, as well
as chapters in the multivariate statistics texts like the one referenced in the
preceding paragraph.

There is some overlap between the issues discussed in Chapters 8 and 9 and
the problem of economic valuation and cost-benefit analysis. Such methods
attempt to translate a range of quantities onto a common scale of economic
value. The issues around these are well elaborated elsewhere. The UK gov-
ernment has official guidance on methodology, the “Green Book”. For one
interesting application, see the report “Measuring Economic Value in Cultural
Institutions”

Finally, this book does not cover the analysis of social network data. This
is again in part because of my relative lack of expertise, part because it is a
well-covered area, and part because network data presents a number of unique
challenges as a data structure. Nonetheless, there are methods widely used in

https://www.gov.uk/government/publications/the-green-book-appraisal-and-evaluation-in-central-governent/the-green-book-2020
https://ahrc.ukri.org/documents/project-reports-and-reviews/measuringeconomicvalue/
https://ahrc.ukri.org/documents/project-reports-and-reviews/measuringeconomicvalue/
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network analysis that are closely related to the methods covered in this book.
There is a close relationship between community detection in networks and
clustering of other data types; some types of exponential random graph models
are very similar to factor analysis and IRT models; and the question of which
network statistics are relevant to measuring different concepts is very much
the sort of question that is aided by the tools covered in Chapter 6.

Acknowledgements
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1
What is Measurement?

“For my money, the #1 neglected topic in statistics is measurement. In most
statistics texts that I’ve seen, there’s a lot on data analysis and some stuff on data
collection—sampling, random assignment, and so forth—but nothing at all
on measurement. Nothing on reliability and validity but, even more than that,
nothing on the concept of measurement, the idea of considering the connection
between the data you gather and the underlying object of your study.” - Andrew
Gelman, 2015

1.1 A Core and Understudied Component of Science

Measurement is a core component of making the study of humans and their
interactions into something we can reasonably call “social science”. Here are
some examples of concepts regularly used in different social science fields:

• Psychology: Perception, Personality, Emotion
• Sociology: Social Class, Mobility
• Political Science: Ideology, Democracy
• Economics: Income, Productivity, Inflation
• Development: Poverty, Inequality, Development
• Education: Knowledge, Understanding
• Geography: Distance, Composition, Distribution

These concepts, and other like them, are used widely across the social sci-
ences. They are how we think about and talk about what is going on. The most
important thing to note about all of them is that they are not “unproblematic”
or “uncontested” in their definitions. While some might look to outsiders like
they are simple measurement problems, these are all concepts with varied
meanings in different applications and contexts.

Social scientists often do not completely agree on how to measure the
things that they are interested in studying, or indeed on how they ought to be
defined in the first place. This is where social science tends to be on more un-
certain ground than contemporary physical and biological sciences. Concepts
like length, mass, temperature, acidity, and others are now universally agreed
within the relevant fields, both in terms of their definitions and also how to

https://statmodeling.stat.columbia.edu/2015/04/28/whats-important-thing-statistics-thats-not-textbooks/
https://statmodeling.stat.columbia.edu/2015/04/28/whats-important-thing-statistics-thats-not-textbooks/
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measure them. But this was not always the case. If you go and read about the
history of science, a great deal of it is about developing tools for solving mea-
surement problems. For the history of measurement in different scientific
fields, “Measurement: A Very Short Introduction” by David J Hand (2016) and
“Inventing Temperature” by Hansok Chang (2004) are both worth a read. If you
are less interested in history and more interested in mathematical theory, mul-
tivolume treatments of the mathematics and philosophy of measurement exist
as well (Suppes and Krantz, 2007; Krantz et al., 1971; Luce et al., 2007). What
follows is a very slimmed down summary of some of that history and theory, as
relates to the aims of this book.

The reason that some concepts—length, mass, etc—gained this status of
being uncontested was (1) that they proved to be not just useful but required for
scientists who wanted to describe the world to one another and (2) that sci-
entists developed tools to measure them reliably in ways that could be under-
stood and reproduced by other scientists. Once a concept becomes universally
agreed on and the subject of reliable measure, it can become a building block
on which further scientific inquiry is supported. Isaac Newton’s famous state-
ment that “If I have seen further it is by standing on the shoulders of Giants”
suggests that scientists are directly supported by those that came before them.
While poetic, this is a misleading metaphor for how science proceeds. Scien-
tists are supported by the concepts and tools that other scientists build and
leave behind for us to work with. We do not stand on the other scientists—
they are mostly far away and dead—we build on the ideas that they create and
communicate.1 1 This is fortunate, because (as we will be re-

minded later in this chapter), many generally
useful scientific ideas were developed by peo-
ple who wanted to use them for abhorrent
purposes.

You would have to be slightly mad to get into a fight with a physicist about
the definitions of concepts like length, mass or energy. But it is also important
to remember that reconceptualising these was fundamental to Albert Einstein’s
development of special and general relativity in the early 20th century. Even in
the natural sciences, core concepts sometimes need revision long after people
think they are fully understood. In the social sciences, we have to spend a lot of
effort thinking about the measurement of seemingly basic concepts. We are not
very good at measuring a lot of the stuff we care about.2 Critical engagement 2 This is primarily because social science

is much more difficult than biological and
physical science. The systems we study are
more complex, less predictable and our
ability to manipulate them is more limited by
practical and ethical constraints.

with concepts and measurement strategies is an important part of being a
social scientist.

Whether in the physical, biological, or social sciences, the best measurement
techniques leverage aspects of our scientific understanding in a useful way.
A classic liquid-in-glass bulb thermometer is based on the fact that (most)
liquids expand in volume when they get warmer. The fact that some do so in
a consistent, linear way that depends only on their temperature is both a fact
that scientists figured out about how liquids behave under temperature change,
and also what enabled people to make thermometers that were reasonably
accurate starting with mercury-in-glass thermometers in 1714. To get to this
point, scientists engaged in “promiscuous measurement” using many kinds
of apparatuses and building on various intuitions that they had about the
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underlying processes involving temperature (Porter, 2020, p18). Developments
in the underlying theory of temperature and the technology used to measure
it developed partly in tandem and partly in parallel, not always by the same
people.

Technology moves on, and now when I check my son’s temperature, I in-
stead use an infrared thermometer that relies on the fact that objects emit
radiation at distinctive wavelengths in the infrared (invisible) range depending
on their temperature. In 1714 no one knew about black body radiation, let alone
how to measure it.3 These measurement strategies are themselves connected to 3 In this case the technological innovation

came very recently. When I was a kid way
back in the 1980s, if I had a fever, my parents
used a liquid-in-glass bulb thermometer on
me, which was the same basic temperature
measurement technology that people had
been using for nearly 300 years.

our understanding of the underlying concept of temperature and its relevance
to understanding a range of phenomena in the world like the expansion of liq-
uids and black body radiation. If the concept was irrelevant to any observable
phenomena, we would struggle to measure it.

1.2 Measurement versus Other Types of Inference

One way to understand measurement is that it is one of three kinds of in-
ferences that we might want to make from data that we have observed. The
terminology that I will use for these three kinds of inference is:

1. Population inference: inference from observed data to the data we would
have measured if we had access to a broader population of units

2. Causal Inference: inference from observed data about the data we would
have observed for the same units given counterfactual circumstances

3. Measurement inference: inference from observed data to different quanti-
ties describing the same units

Population inference is often the first kind of inference that is taught to
students learning statistics, and is often simply called “statistical inference”. To
have reliable population inference, you need to understand the relationship
between the population of interest and the sample of that population that you
have observed. How did we come to observe these units, as opposed to the
rest of the units that we want to characterise? Did you determine which units
you observed? The ideal, simple case is random sampling from the population,
which enables straightforward statistical inferences from sample to population,
with known properties.4 Of course in practice, simple random samples are 4 Stratified sampling and other variations on

simple random sample can be more efficient,
however require more information before
the sample is collected and complicate data
analysis afterwards.

difficult to collect in many contexts, and much applied work makes do with
more or less good approximations thereof.

Causal inference is distinct from population inference because we are
not making an inference from observed units to unobserved units but rather
making an inference from observed potential outcomes for a set of units to
unobserved potential outcomes for a set of units. To have reliable causal in-
ference, you need to understand the relationship between data and treatment
assignment. How did we come to observe the units under the circumstances
that they experienced? Did you determine those circumstances? Analogously to
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population inference, the ideal, simple case is a randomised experiment, which
enables straightforward estimation of an unbiased estimate of an average treat-
ment effect, with known properties.

Measurement inference5 is distinct from either population or causal in- 5 In the context of latent variable modelling,
Bartholomew et al. (2011) refer to this kind of
inference as “psychometric inference”.

ferences because both of the former are inferences from observed values of
a given quantity to some kind of unobserved values of that same quantity,
whether for different units (population inference) or the same units under dif-
ferent circumstances (causal inference). In constrast, when we are engaged in
measurement, we are attempting to use observed values of one or more quan-
tities (“indicators”) to make claims about a different kind of quantity: some
target concept of interest. Just as for population inference and causal inference,
for this to be successful we need to understand the relationships between the
data we observe and the quantities about which we want to make inferences.
In the case of measurement, this means we need to understand the relationship
between observable indicators and the target concept that we want to measure.

1.3 Representational versus Pragmatic Measurement

The “Pragmatic” in the title of this book is meant in the colloquial sense as
well in a more technical sense. The colloquial sense of pragmatic applies in
that we are aiming to solve problems based on practical constraints and goals.
The technical sense reflects a very useful distinction, described by David Hand
(Hand, 1996, 2016), between “representational measurement” and “pragmatic
measurement”.

1.3.1 Representational Measurement

Representational measurement theory is based on the idea that we are measur-
ing real attributes of empirical systems in the world. There are objects in the
world. Those objects interact with other objects in the world through causal
processes. There are attributes of those objects that condition those causal
interactions. Because there is a causal connection between the attribute of
the object and these interactions—changing the attribute would change the
subsequent interactions—we can learn things about the attribute by virtue of
observing the interactions of the object. Representational measurement thus
takes a causally generative view of how the attributes that we want to measure
are related to the data we collect in the process of measurement. The observa-
tions that we make are causally shaped by the attributes we want to measure.
The fact that an attribute of an object conditions the causal processes that the
object is involved in is how you know it is a “real” attribute of the object.
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Figure 1.1: Alice’s Adventures in Wonderland
by Lewis Carroll. Illustration by John
Tenniel.

For example, think about the height of a person. Your height conditions
how you interact with the world. Among many other consequences, it is a
consistent feature of the world that your height is a constraint on the height
of openings that you can walk through without bending over. The fact that
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objects cannot generally pass through other objects is a more general causal
mechanism in the world which facilitates a measurement strategy. We can
measure whether an object is larger or smaller than some value by whether
it can pass through an opening of that size. This is the principle behind the
baggage size testers in airports: if you want to know whether something is a
certain size or smaller, you can find out by trying to put it through an opening
of that size. We could, if we were unkind, measure human height by having
people walk under lower and lower bars until they hit their heads. It turns out
there are less painful ways we can measure height too, because the physical size
of an object, of which human height is just one example, causally conditions
many physical interactions. These varied causal interactions generate the
possibility of many different measurement strategies.

More generally, from the representational perspective: 1. Objects have
attributes. 2. Attributes of objects causally determine the consequences of
objects’ interactions with other objects; if the attributes changed, so too would
the interactions. 3. Therefore, we can learn about objects’ attributes through
a measurement procedure that involves observing calibrated interactions with
other objects. The crucial word here is “calibrated”. By calibrated, I mean
that we already have a body of knowledge about how different observable
interactions arise from different levels of the attribute that we are trying to
measure.

Where exactly is this body of knowledge supposed to come from initially,
if we lack already existing measurement procedures? The book “Inventing
temperature: Measurement and scientific progress” (Chang, 2004) provides a
detailed history and philosophic discussion of these issues with respect to the
measurement of temperature, and is well worth reading. The way to solve this
“chicken and egg” problem is in some sense the same way that real chickens
and eggs came into being. Neither came first, rather they jointly evolved over
time. Human understanding of temperature and the instruments for measuring
it were developed together over hundreds of years, with refined understand-
ing of the concept facilitating better measurement and better measurement
facilitating a refined understanding of the concept.

1.3.2 Pragmatic Measurement

In the preceding paragraph, we made a distinction between “temperature” and
“human understanding of temperature”. Temperature is a defined quantity
that scientists use to describe the world. However it is debatable whether
“temperature” really existed prior to human definition of the concept and the
scales on which it is measured. Temperature is a very convenient summary of
the energy states of matter, because for many interactions that humans care
about, it is sufficient to know the temperature (as defined) of materials without
knowing further lower level details. This is in part due to the details of those
lower level processes: the underlying physics of how individual atoms and
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molecules interact with one another make temperature a useful summary of the
system.

Humans discovered how useful this summary was from a process of con-
ceptual refinement that very likely began with the simplest possible mea-
surement technology: the subjective perception of temperature in the human
environment combined with the invention of some ancient variation on the
concepts of “hot” and “cold”.6 People found it useful to have language to dis- 6 There are many thresholds at which

one might make distinctions between
temperature values and different languages
make different distinctions (see Koptjevskaja-
Tamm, 2015).

criminate between different subjective experiences of the world in order to
communicate them to one another, the fact that there turned out to be a deep
connection to thermodynamic processes need not have been the case. While
subjective experience of temperature by humans is vague and qualitative, it is a
starting point for conceptual refinement. If someone then observes that bodies
of water freeze over only when it feels “very cold”, you have a benchmark for
temperature that can be usefully communicated to other people, “cold enough
that the water becomes solid”, and the process of conceptual refinement has
begun.7 7 If you like this sort of conjectural history,

you will enjoy the philosophy of of Jean-
Jacques Rousseau.

If we take seriously that measurement is a human project, oriented towards
communicating our understanding of the world with other humans, we are en-
couraged to take a pragmatic, or “operationalist”, perspective on measurement,
rather than the representational perspective described earlier. The pragmatic
perspective starts, not with the idea that objects have real attributes, but rather
with the idea that we have measurement procedures.

1. We can specify measurement procedures.
2. Attributes are defined as the output of a measurement procedure.

One advantage of this approach is that it is epistomologically modest. We
avoid making a strong assumption about objects in the world really having
particular attributes. We don’t need to be as bothered by whether an object
“really has” a temperature, so long as temperature constitutes a useful summary
for some purposes. If “temperature” is a useful way to talk about world, and
we have measurement procedures to facilitate that communication, that is
good enough. What makes temperature useful is that it is discriminative: it
helps us communicate distinctions between different states of the world to one
another. In this instance, we further know enough physics to be able to say it
also seems to be a summary of many generative processes, which is helpful at
a pragmatic level because it facilitates robust measurement procedures. But a
concept and corresponding measure can be useful even if it is not an attribute
of a generative processes, if it helps us communicate differences to one another.

From this pragmatic perspective, measurements are useful summaries of
things we observe in the world, reflecting attributes that we invented to help
us understand and talk about the world, not attributes that necessarily existed
already. This is why it generally makes sense to call them “concepts” rather
than “attributes”, to emphasize that someone did the conceptualisation that
brought them into being. This is not an idea that everyone finds appealing,
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particularly in the context of the natural sciences. “Some people find distasteful
the fact that operational theory draws conclusions only about the results of
measurement procedures, and leaves researchers to make an inference to an
‘underlying reality’ if they so wish” (Hand, 1996). However, in the context of the
social sciences, it is clearer that many of the concepts that are widely used are
pragmatically defined and measured.

For example, consider the concept of “democracy”, measured at the level
of countries.8 This is an example we will return to in coming chapters. It 8 Or consider the concept of a “country”, to

which the same issues apply.would be difficult to argue that countries “really” have a binary attribute of
“democracy” or “not democracy” or a continuous attribute of the extent of
“democratic-ness” that itself causally determines whether they do things like
hold elections or not. Rather, “democracy” is a label, a summary, that we use
to describe how the political institutions of a country are organised (includ-
ing whether they hold elections or not, the properties of those elections,
etc). Scholarly arguments about which summary to use—how to measure
democracy—are in fact arguments about conceptualization, how we opera-
tionalise the concept of “democracy”.

1.3.3 Contrasts and synthesis

One way to think about the contrast between the representational and prag-
matic perspectives on measurement is that the former is a “realist” account and
the latter is not. By “realist” here, I mean that representational measurement
is committed to the idea that you are measuring something in the world that
exists independent of you measuring it and that causally shapes some interac-
tions in the world. The contrasting perspective might be called “constructed”:
attributes are created by the measurement procedures, they do not exist in the
world until we create them. You may well have run across realism vs construc-
tionism/constructivism debates in other contexts, this is a similar underlying
contrast in perspectives.

Human height is a good example of the contrasting interpretations, if only
because it seems like such a strong case for realism. You might be thinking:
obviously human height is a real attribute of humans that exists whether we
measure it or not. But does it, exactly? Humans are foldy in the middle and
squidgy around the edges. Even if we agree on a definition of length (eg the
standard metric measurement scale) we are going to get different numbers
depending on whether we stand you up, lie you down, hang you upside down,
put you in zero gravity, or have you walk into a giant funnel until you bump
your head. Which one is your true height? That obviously depends on how
we define the measurement procedure for “true height”. So even here, with a
physical measurement, some pragmatism or operationalism is difficult to avoid.

Representational measurement is, at best, aspirational for many social sci-
ence applications. In practice much of what we do is pragmatic, thus the title of
this book. This is not meant to be an argument for the pragmatic interpretation
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against the representational interpretation in general, but rather to highlight
the distinction. My own view, and the view adopted in this text, is we should
aim for representational measurement where possible and be clear about when
we are measuring quantities that we believe are part of a causal generative pro-
cess. But we should also be clear about when we are being pragmatic: defining,
conceptualising and measuring quantities that we create in order to be dis-
criminative between different cases. Being pragmatic does not mean you are
denying that there is a real world out there and that you would like to measure
its real properties. No one had to articulate the concept of height or a measure-
ment strategy for height in order for giraffes to consistently struggle to walk
through low doorways. The causal processes were there regardless of whether
we tried to measure them or not.

It is important to recognise, however, that if you are happy to embrace this
“pragmatic realist” synthesis of the representational and pragmatic perspec-
tives, that it implies some measurements are more or less representational
versus pragmatic. Some measurement strategies will be closely connected to
important and well-understood causal relations that we are very confident
really exist in the world. Other measurement strategies will be less closely
linked to causal relationships that we are confident exist in the world, and are
simply summaries of data that we find useful. Scientists—physical, natural
and social—often start with pragmatic summary measures and aim to move
towards more representative measures as we improve our understanding of the
underlying processes that govern what we study.9 9 In the context of social relations of humans,

measurement strategies can be as much a
cause of as a reflection of the causal relation-
ships that exist in the world. Concepts that
humans invent can shape their future interac-
tions. Sometimes things happen only because
we have chosen to measure the world in a
particular way.

This book, as clearly indicated by its title, is focused on measurement meth-
ods that are more “pragmatic” in orientation. This means that some important
measurement topics are not covered in this text. An obvious “measurement”
topic that I do not cover is survey sampling. Survey sampling is fundamentally
about measurement: how do we collect samples of data that allow us to charac-
terise the properties of the populations from which those samples were drawn?
This is very much towards the “representational” end of the spectrum of social
science measurement. There really are some number of people out there in a
population, if it has been reasonably defined. If you are interested in measuring
population statistics for something you can measure at the individual level,
there is a causal relationship between that property of the population and the
individual-level data that is generated by a well-defined sampling procedure.
That causal link is encoded in the canonical statistical results on this subject,
and that makes survey sampling a representational measurement exercise.

I do not think it is a coincidence that survey sampling is amply covered
in many, many other books. Representational measurement tasks are often
more amenable to formalisation, precisely because the causal structure that
underpins the relationship between the concept being measured and the data
being observed dictates the quantitative structure of the problem. In con-
trast, saying usefully general things about pragmatic measurement is more
difficult. The researcher needs to develop the mathematical structure as part
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of the process of conceptualization, and the criteria of evaluation for which
mathematical structures are best tend to be more ambiguous. The fact that
pragmatic measurement problems tend to provide less guidance about which
maths are appropriate has a number of important consequences, among which
is a tendency to apply and re-apply a set of quantitative tools with convenient
mathematical properties. These tools, and the process of reasoning through
their application to new problems, are the focus of this book.

1.4 Perils of Quantitative Measurement

This is a book about quantitativemeasurement of social science concepts.
One articulation of why quantitative measurement is particularly valuable is
given by Theodore M Porter in his book “Trust in Numbers: The Pursuit of
Objectivity in Science and Public Life”:

“Since the rules for collecting and manipulation of numbers are widely shared,
they can easily be transported across oceans and continents and used to coor-
dinate activities or settle disputes. Perhaps most crucially, reliance on numbers
and quantitative manipulation minimizes the need for intimate knowledge and
personal trust. Quantification is well suited for communication that goes beyond
the boundaries of locality and community. A highly disciplined discourse helps to
produce knowledge independent of the particular people who make it.” (Porter,
2020, p. xxi)

This book is not a history of quantification in the social sciences or else-
where, nor is it centrally focused on justifying the project of quantification of
social science concepts in general. I assume that we are embarked on the pro-
cess of quantification (quantitative measurement), and focus on developing the
skills and understanding necessary to do that quantification well, as opposed
to doing it poorly. To do that, it is necessary to understand the criticisms of
quantification, because most of them reflect real ways in which quantitative
measurement can go wrong.

Within many social science fields, there are “quant-qual” divides, with
scholars who do not merely use different methods in their own research, but
sometimes doubt whether the methods used by others generate useful hu-
man knowledge. Different fields have vastly different balances of power and
influence between those who work with quantitative data and those who do
not (think economics versus anthropology). Among other critiques, quanti-
tative research is variously accused of using simplistic and superficial data,
for encouraging over-generalisation of findings, for encouraging the study of
parochial topics at the expense of more important ones, and for creating an
illusion of objectivity.

These criticisms of quantitative research in social science are complemented
by criticisms of quantification in public policy. You may be familiar with ar-
guments that the use of quantitative social measurement (or “metrics”) can
have negative consequences for society. Criticisms of educational testing are
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widespread, and include criticisms that tests are too unreliable as measures
of learning and too narrow in what they test. Statistical models used to make
decisions in the criminal justice system regarding probation, parole and the
likelihood of recidivism have been criticised for being limited, opaque and
relying on information that is potentially unfair to use in evaluating an individ-
ual. More recently, Kay and King (2020) criticise mathematical modelling and
“bogus quantification” in policy-making.

The most vociferous objections to quantification and ranking often come
from those who are being quantified, particularly if they believe that they are
themselves better equipped to make evaluations than those who would evaluate
them. Rankings of universities are widely ridiculed by academics, even as they
find themselves adapting their behaviour in response to rankings like that of
US News and World Reports:

It’s one of the real black marks on the history of higher education that an en-
tire industry that’s supposedly populated by the best minds in the country—
theoretical physicists, writers, critics—is bamboozled by a third-rate news mag-
azine. . . . They do almost a parody of real research. . . . I joke that the next thing
they’ll do is rank churches. You know ’Where does God appear most frequently?
How big are the pews?10 10 Leon Botstein, president of Bard College, as

quoted by Alice Gregory, “Pictures from an
Institution”, https://www.newyorker.com/
magazine/2014/09/29/pictures-institution
September 22, 2014

Kieran Healy argues that this impulse to reject quantification of one’s own
performance reflects “the loss of a profession’s control over its ability to make
judgments about quality and prestige in its own domain” (Healy, 2017, p513):

Law school faculty, deans, and administrators are long past the time of their
lives when their individual performance is routinely assessed in terms of As
or Bs, as magna or summa cum laude. But they still exercise that capacity for
judgment over others every week of the semester. They believe in it. They are
still committed to the view that they know and can assess quality when they
see it, and they usually think they can reliably quantify it. It is just that they
would rather not be subject to that pressure themselves. Becoming a faculty
member should have been a way to escape it. At the heart of an academic ranking
system is the experience of having one’s own knife turned back upon oneself, and
finding that it still cuts like it used to. (Healy, 2017, p519)

Quantification tends to be unpopular with the quantified. Sometimes this is
because evaluation is unpopular with the evaluated: the quantification per se is
only part of the issue. Unpopularity is itself not much of an argument against
quantification though.

What kinds of problems tend to arise from quantitative social measure-
ment? I will discuss four general types. First, problems of narrowness: the de-
mands of quantification might lead us to focus on some concepts at the expense
of others, or narrowly defined conceptions of those concepts at the expense
of richer ones. Second, quantification may create problems of fairness: the
we may introduce (but also hide) biases through the process of quantification.
Third, the use of quantitative measures may create unintended consequences,
as people modify their behaviour in response to incentives created by the

https://www.theguardian.com/education/2014/may/06/oecd-pisa-tests-damaging-education-academics
https://www.theguardian.com/education/2014/may/06/oecd-pisa-tests-damaging-education-academics
https://www.nytimes.com/2020/02/06/technology/predictive-algorithms-crime.html
https://www.nytimes.com/2020/02/06/technology/predictive-algorithms-crime.html
https://www.nytimes.com/2020/02/06/technology/predictive-algorithms-crime.html
https://www.nytimes.com/2020/02/06/technology/predictive-algorithms-crime.html
https://www.nytimes.com/2020/02/06/technology/predictive-algorithms-crime.html
https://www.newyorker.com/magazine/2014/09/29/pictures-institution
https://www.newyorker.com/magazine/2014/09/29/pictures-institution
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use of these measures. Fourth, quantitative measures may enable individuals
with malign intentions to exert objectionable patterns of social control. In
discussing these four types of problems, I will use examples of policing, for-
eign aid and education as examples, as the scope and use of measurement in
all of these areas have expanded over the last half century, and the potential
problems associated with this have been discussed extensively by scholars and
policy-makers.

Obviously it is not my view that these problems so fundamentally under-
mine quantitative measurement in the social sciences that we should not do
it at all. Nonetheless, I want to emphasize that these are all real problems, and
ones that researchers developing and using quantitative measures of social
science concepts need to seriously consider in the context of their work.

1.4.1 Problems of Narrowness

Some concepts are rich, complex and/or multifaceted. Or to be less charitable,
some concepts are vague in their definition. It is “easier” to maintain a rich
conceptualisation when we discuss those concepts in words than when we try
to translate them to quantitative measurements. When we generate measures,
they are often therefore narrower, or more minimalist, conceptualisations. Nar-
rower conceptualisations can be beneficial for providing clarity, but sometimes
they simply exclude elements of the concept that one would have preferred to
have included. The more that we then use those measures, the more that we
may tend to lose track of the elements of the original concept that we did not
know how to quantify. Bueno de Mesquita (2019) argues that this phenomenon
is common in the evaluation of public policy, where the difficulty of measuring
some consequences of public policies tends to encourage researchers to implic-
itly adopt a philosophy of “crass utilitarianism” where only those outcomes that
can be translated into monetary terms are considered.

In the area of policing, a focus on crime statistics may reduce our focus on
other criteria we might care about but which are more difficult to measure, and
which may or may not vary in the same way as crime statistics (Sparrow et al.,
2015). Do people feel safe going about their daily lives? Do they make decisions
not to do things that they would otherwise do based on safety concerns? Do
people trust police? Do people feel comfortable interacting with the police? Do
the police use appropriate methods in policing? The worry is that the introduc-
tion of and focus on quantitative data on crime incidence might have the effect
of displacing these concerns, although making such a causal attribution of any
changes to the increased availability and use of crime rate statistics is extremely
difficult one way or the other.

In the area of foreign aid, the effective altruismmovement seeks to use
evidence to maximise the amount of good that can be achieved, particularly
though not exclusively in the domain of charitable donation (Singer, 2009).
While few would argue against effectiveness as a goal of philanthropy, one
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risk of focusing heavily on measurable quantities like cost-effectiveness is that
it prioritises measurable goods at the expense of unmeasurable (or not yet
measured) goods (Rubenstein, 2016). Organisations like GiveWell provide lists
of “Top Charities” for which a clear quantitative evidence base can be provided,
such as anti-malarial interventions, vitamin deficiency interventions, cash
transfers, treatments for parasitic worm infections, and others. But does this
have the effect of diverting donations from other areas where quantitative
evaluation is more difficult?

In the area of education, it is common to worry that exams fail to measure
many of the skills that we would like students to gain from their education.
Sometimes this is obvious: a multiple choice exam will do little to test whether
students can explain how they selected an answer to that question. Some of
this is more subtle: if one goal of education is to develop students ability to
work collaboratively, then examining them individually will never assess
whether they can do so. Some of the narrowness can also be the result of
the fact that exam performance depends on the things that we do not want
to measure. For example, if some students are just better at taking exams,
independent of their understanding of the material, they will perform better
than students who are less adept at taking exams. Exam-taking ability may be
a valuable skill in school, but there are very few exams once one leaves school.
School is meant to be preparing one for doing well in life, not just for doing
well in school.

In an essay “We Still Can’t See American Slavery for What It Was”, the
journalist Jamelle Bouie asks “How do we wield these powerful tools for quan-
titative analysis without abstracting the human reality away from the story?”
His concern about the potential narrowness of quantitative measurement and
characterisation of the history of American slavery is closely related to the
problems of narrowness described above in other domains. His conclusion is, I
think, the correct one:

“All of this is to say that with the history of slavery, the quantitative and the
qualitative must inform each other. It is important to know the size and scale of
the slave trade, of the way it was standardized and institutionalized, of the way it
shaped the history of the entire Atlantic world. But as every historian I spoke to
for this story emphasized, it is also vital that we have an intimate understanding
of the people who were part of this story and specifically of the people who were
forced into it.”

Quantitative measurement should not blind us to the unmeasured and un-
quantified aspects of individuals who enter into our data analyses. Many of the
failures of quantitative social measurement are such failures. At the same time,
refusing to quantify is to refuse to engage with the scale or magnitude of social
problems and sets us up to only care about the individuals we can see in quali-
tative detail. We live on a planet with billions of people. The people we can see
and understand at qualitative levels of detail are disproportionately those who
are close to us in space and in society, and those that various forms of media

https://givewell.org/
https://www.nytimes.com/2022/01/28/opinion/slavery-voyages-data-sets.html
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bring to our attention for various and often unrepresentative reasons. Quanti-
tative measurement, and quantitative methods more generally, are necessary if
we want to see the world in representative ways and situate ourselves to draw
conclusions and reach decisions that are responsive to the whole world, not
just the parts we can see in detail. But if we want those quantitative measure-
ments to reflect the concepts we aimed to measure in ways that do not mislead,
in depth engagement with and understanding of some cases at a qualitative
level is simultaneously necessary.

In sum, quantification encourages and relies on parsimonious conceptual-
isations. While this is often useful in providing clarity and for expanding the
potential scope and scale of inquiry, it can also lead researchers to lose track
of relevant aspects of the concepts that they aim to study. Whenever one is
developing or using quantitative measures, it is important to spend some time
thinking about how close those measures are to the concept that one actually
wanted to measure. What is missing? What is there that ought not to be? The
answers to these questions can sometimes motivate improved measurement,
but they should always shape the conclusions that we draw from any analysis
using the measures that we have.

1.4.2 Problems of Fairness

Quantitative measurement can create problems of fairness. It can also simply
expose existing unfairness. There are of course many senses of “fairness” that
are relevant in any social science application, most of which do not have any-
thing to do with the quality of measurement. The “fairness in measurement”
we are interested in here is fundamentally about measurement error, and is
discussed in more detail in Chapter 4. The definition of fairness that I use
here is that a measure is unfair when a measurement strategy systematically
misrepresents the relative values of the underlying quantity that one aimed
to measure when comparing different groups of units. Fairness is a compar-
ative claim: that units which ought to be treated similarly are in fact treated
differently by the measurement strategy.

Because we are most often interested in fairness to individuals, fairness
criticism most obviously apply to measurements at the level of individual
humans. Nonetheless, it may make sense to talk about a measurement strategy
being unfair for other kinds of units as well: a measure of whether countries
are democratic might be unfair to countries in one part of the world that
use one set of institutions if those institutions are incorrectly treated as less
democratic than other institutions when they ought to be treated similarly.
Of course if those institutions are correctly treated as less democratic, there is
no problem of fairness. This highlights the crucial point, developed further
in Chapter 4, that making any claim about fairness requires you to make a
clear distinction between the target concept that you want to measure and
the measure you actually have. It is in the discrepancies between these—the
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measurement error—that unfairness can be found.
Making a claim that a measure is unfair requires a normative commitment

regarding what fair treatment is. In the context of measurement, it can be
challenging to articulate the normative standard, as doing so tends to come
close to requiring the development of an improved measure with which to
benchmark the one being criticised. If such an improved measure were avail-
able, and everyone agreed it was better, presumably people would use that one
instead. Instead, there is often disagreement about which measures better ap-
proximate the concept of interest, because there is a disagreement about the
appropriate conceptualisation of that concept. Thus arguments about the fair-
ness of measures are sometimes proxies for arguments about the appropriate
conceptualisation of the concept we want to measure.

In the area of education, fairness concerns are raised with respect to both
measurement of student performance and also teacher performance. With
respect to student performance, we might worry that disparities in test per-
formance between different groups (whether by race, gender, class or other
descriptive categories) are not due to different understanding of the material
but instead due to differential performance on the tests given the same under-
lying understanding of the material. For example, research by Freedle (2003)
and Santelices and Wilson (2010) argued that some items on the verbal compo-
nent of the SAT college entry exam in the US advantaged white test takers over
black test takers, because they relied on cultural expressions that were more
prevalent among white communities than black communities in the US. They
observed that black students who did equally well as white students on the
more difficult items on the test did worse on average on the easy ones, which
tended to reflect more informal and culturally-specific uses of language.

With respect to measuring teacher performance, there are many challenges
to measurement. An obvious fairness concern has to do with the fact that
different teachers teach different students from different populations, and so
direct comparison of student performance at the end of the academic year is
unlikely to provide a fair comparison of teaching quality between different
teachers. To address this, “value added modelling” is often used to adjust for
students’ past test scores, when assessing the gains that they have made while
being taught by particular teachers. While these comparisons of gains are an
improvement on naive comparisons of end-of-year performance, there are still
a number of potential biases that put some teachers in a better position to excel
by these measures.11 11 A distinct problem is the reliability of these

measures for new teachers: it can take many
years of students to have enough student
data to confidently identify which teachers
will perform better by these measures over
the long-run. This distinction is developed
further in Chapters 3 and 4.

Quantification is no more likely to create problems of fairness than non-
quantification: problems of fairness are rife throughout the social world.
Quantification is useful in creating a framework for assessing the magnitude
of such problems and in articulating exactly what is meant by fairness. At the
same time, “naive quantification” which fails to engage with these issues can of-
ten distract people from the potential for such problems. What we even mean
by “fairness” is often itself difficult: there are different conceptions of what fair-

https://en.wikipedia.org/wiki/Value-added_modeling


pragmatic social measurement 29

ness actually requires, some of which cannot be simultaneously satisfied. This
is covered in detail in Chapter 4.

1.4.3 Problems of Unintended Consequences

Measurement can distort the incentives of the people who are being mea-
sured as well as those who are doing the measuring. As discussed above, we
often find it easier to measure certain aspects of a concept than others. If we
go further, and attach incentives to our measurements (often called “metrics”
in this context) we then will be actively focusing people on only certain as-
pects of the target concept, potentially to the detriment of their attention to
others. Attaching incentives to measurements makes people pay less attention
to the things you cannot measure, and potentially encourages them to “game”
the measurement strategy by optimising the metric at the expense of the un-
derlying concept that you aimed to measure. This will tend to undermine the
measurement strategy’s validity prospectively, regardless of how well it worked
before one started trying to “use” the measure.

This idea is variably attributed as Campbell’s Law to the American psychol-
ogist Donald Campbell or as Goodhart’s Law to the British economist Charles
Goodhart, as both authors first published relevant statements in 1975 (Rodamar,
2018):

Campbell’s Law: “The more any quantitative social indicator is used for social
decision-making, the more subject it will be to corruption pressures and the
more apt it will be to distort and corrupt the social processes it is intended to
monitor.”

Goodhart’s Law: “Any observed statistical regularity will tend to collapse once
pressure is placed upon it for control purposes.”

How do we know when policing is being done more or less effectively?
Crime statistics have become increasingly widely used “metrics” for evaluat-
ing the performance of police over the last half century. One problem with
this is that police themselves generate the statistics that are used to evaluate
police performance.12 If police are judged on the number of serious crimes, 12 If you have ever watched The Wire, you will

be familiar with the phrase “juking the stats”.or the number of unsolved crimes, they may take advantage of available op-
portunities to record lesser charges or avoid recording that a crime happened
at all. Already by 1976, early in a multi-decade rise in (recorded) crime in the
US, this effect of increased attention to crime statistics “had as its main effect
the corruption of crime-rate indicators, achieved through underrecording
and downgrading the crimes to less serious classifications” (Campbell, 1976).
In 2013, a whistleblower in the Metropolitan Police in London told Parliament
that “that massaging statistics had become ‘an ingrained part of policing cul-
ture’ ”.13 Beyond simply reclassifying unsolved crimes, the incentives to have 13 “Police fix crime statistics to meet targets,

MPs told” 19 November 2013. https://www.
bbc.co.uk/news/uk-25002927

high clearance rates may induce police to focus on frequently arresting low-
level criminals rather than engaging in lengthy, large scale investigations of
more consequential criminal enterprises (Muller, 2018, p129).

https://en.wikipedia.org/wiki/Campbell%27s_law
https://en.wikipedia.org/wiki/Goodhart%27s_law
https://en.wikipedia.org/wiki/The_Wire
https://www.youtube.com/watch?v=_ogxZxu6cjM
https://www.bbc.co.uk/news/uk-25002927
https://www.bbc.co.uk/news/uk-25002927
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Which foreign aid is worthwhile and where should aid spending be focused?
As already discussed, there is a strong recent movement to try to establish
which charities are more effective, but it is often very difficult to measure effi-
cacy. We have already discussed the ways that the measures might be limited,
but these various limitations of the measures beget problems of unintended
consequences, as organisations refocus their attention and resources on mea-
surable outcomes rather than potentially more important but less easily mea-
sured ones. One risk is a heavy focus on narrow conceptions of well-being
involving relatively easy to measure goals like increasing monetary incomes.
Another risk is a focus on short-term goals rather than long-term goals, as it is
easier to demonstrate effectiveness if you do not have to wait for a long-term
evaluation (Muller, 2018, p153-156).

In the area of education, the possibility that teachers will narrowly “teach
to the test” is a common worry when teachers are given performance incen-
tives that are based on student test performance.14 The theoretical argument 14 Mehrens and Kaminski (1989) provides

an interesting discussion of the ethics of
teaching to the test, from the perspective of
the teacher.

is detailed by (de Mesquita, 2016, p205-213). Tests can bias teachers towards ex-
pending effort inefficiently on outcomes that are more strongly reflected in test
results and away from expending effort on other valuable student outcomes
that are not captured by the test. If you want students to learn a set of skills,
some of which are measured " by the test and some of which are not # , there
is an incentive for teachers and students to focus on " rather than # . In this
context, making the test “better” by improving the signal it provides about
the measured components of student understanding ("), without improving
coverage of the other components (# ), only exacerbates the problem, pushing
teachers towards even more lopsided focus on ". In one sense, this might be
said to show that improved measurement is not always good; in another sense,
it illustrates that we need to be careful about what we call an improvement.

One rejoinder to concerns about the incentives created by high stakes
testing is that teaching to the test is good, if the tests are well designed. What is
meant by a good test here is a good measurement of the concept that we want
to measure, which should be students’ understanding of the material, broadly
rather than narrowly understood. One way that a test can be bad is if it is the
sort of test which makes it possible for students to do well on the test while
struggling with even a moderately different assessment of their understanding.
Thus a critical question in test design is the feasibility of very narrow test
preparation. If the test is written in such a way that one can narrowly prepare
for it without a broader understanding, that creates a much larger incentive
problem than if this is an ineffective strategy. The easiest tests to narrowly
prepare for are those where there is a fixed set of possible questions, known
in advance, and students can simply learn the answers to all these questions.
Such tests create very strong incentives to simply learn all the correct answers,
without learning why they are the correct answers, and thus failing to train
students to answer any other related questions that they might face in the
future. The problem is that “good tests” that do not have this property can be

https://www.insidehighered.com/views/2013/09/05/teaching-test-good-if-its-right-test-essay
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more difficult to design than “bad tests”.15 15 Some goals of a test might also make those
tests poor for other purposes: tests designed
for ranking students may not be the best tests
for aiding the instruction of those students or
for evaluating teacher performance.

This point generalises to other measurement problems in the sense that
some measurement strategies are based on quantitative indicators that are easy
to optimise for without actually improving the underlying concept that one
aimed to measure, while for others this is more difficult. Some measurement
strategies are more susceptible to problems of unintended consequences than
others, because some are much easier for the actors to manipulate. If police
were not themselves responsible for the generation of crime data, such data
might be a better tool for evaluating police performance. There would be much
less enthusiasm for value-added measures in evaluating teachers if the teachers
got to individually set the tests by which they were evaluated.

But even if those generating and analysing the data are not those being
ranked, the incentives for manipulation can still create problems. Starting
in 2003 the World Bank published an annual “Doing Business report” that
ranked countries on the basis of a linear index that aimed to measure the
extent to which different countries were good places to do set up and run
businesses. Rankings depended on scores in 10 sub-indices covering regulatory
obstacles, the availability of electricity and of credit, and the functioning of
the tax and legal systems, among others. This became a widely used index in
academic work and is believed to have encouraged some countries to try to
ameliorate some obstacles to setting up successful businesses. However, as
the prominence of the index rose, so too did the incentives to manipulate it.
In 2018, the World Bank revised past reports after it became apparent that the
group responsible for the index had manipulated the index values for Chile
to penalise governments of the political left in the preceding decade relative
to those of the political right, in a way that did not reflect any actual changes
made by the governments in the relevant domains of law and regulation. Then,
in early 2021, the law firm WilmerHale was employed by the World Bank to
investigate and report on further improprieties related to the construction of
the Doing Business reports for 2018 and 2020.

The investigation report found that in 2017, the CEO of the World Bank
and senior staffers to the President of the World Bank intervened in the de-
velopment of the index after the initial draft of the Doing Business report for
2018 saw China falling in the rankings, exploring methodological changes that
might improve China’s ranking. Ultimately this led to changes in the values of
three data points for China, relating to the Bank’s assessments of “the Starting
a Business, Legal Rights - Getting Credit, and Paying Taxes indicators. The
modifications, for example, reduced the amount of time necessary to comply
with various regulations, which in turn, boosted China’s score. These changes
boosted China’s score by nearly a point and increased its ranking by seven
places to 78, the same ranking that the country had in Doing Business 2017.”16 16 https://thedocs.worldbank.org/en/doc/

84a922cc9273b7b120d49ad3b9e9d3f9-0090012021/
original/
DB-Investigation-Findings-and-Report-to-the-Board-of-Executive-Directors-September-15-2021.
pdf

The investigation report also documents similar changes made to improve
Saudi Arabia’s ranking relative to Jordan for the 2020 Doing Business report, as
well as other irregularities. The investigation report further states that mem-

https://www.edweek.org/ew/articles/2016/03/23/the-fatal-flaw-of-educational-assessment.html
https://www.edweek.org/ew/articles/2016/03/23/the-fatal-flaw-of-educational-assessment.html
https://www.edweek.org/ew/articles/2016/03/23/the-fatal-flaw-of-educational-assessment.html
https://www.edweek.org/ew/articles/2016/03/23/the-fatal-flaw-of-educational-assessment.html
https://thedocs.worldbank.org/en/doc/84a922cc9273b7b120d49ad3b9e9d3f9-0090012021/original/DB-Investigation-Findings-and-Report-to-the-Board-of-Executive-Directors-September-15-2021.pdf
https://thedocs.worldbank.org/en/doc/84a922cc9273b7b120d49ad3b9e9d3f9-0090012021/original/DB-Investigation-Findings-and-Report-to-the-Board-of-Executive-Directors-September-15-2021.pdf
https://thedocs.worldbank.org/en/doc/84a922cc9273b7b120d49ad3b9e9d3f9-0090012021/original/DB-Investigation-Findings-and-Report-to-the-Board-of-Executive-Directors-September-15-2021.pdf
https://thedocs.worldbank.org/en/doc/84a922cc9273b7b120d49ad3b9e9d3f9-0090012021/original/DB-Investigation-Findings-and-Report-to-the-Board-of-Executive-Directors-September-15-2021.pdf
https://thedocs.worldbank.org/en/doc/84a922cc9273b7b120d49ad3b9e9d3f9-0090012021/original/DB-Investigation-Findings-and-Report-to-the-Board-of-Executive-Directors-September-15-2021.pdf
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bers of the Doing Business team “felt powerless to object to carrying out the
data improporieties being requested by senior bank management.”

In response to these findings, the World Bank chose to discontinue the
production of the Doing Business report in 2021. Tim Harford, an author and
commenter on the use of statistics wrote in 2021 that “I fear Doing Business
was a victim of its own success. There are two types of statistics in the world:
the ones that politicians ignore and the ones that politicians want to manip-
ulate. The demands for manipulation will never go away, but the answer is
not to cancel the gathering of statistics. It is to defend the independence of the
statisticians.”17 But it is worth noting that the World Bank, by virtue of its other 17 https://www.ft.com/content/

c611a877-9a98-40d4-995d-e69d901df6f6activities, was particularly at risk of this kind of pressure. If the World Bank
needs the cooperation of countries like China and Saudi Arabia to complete
its core mission, perhaps that means it should not also be in the business of
rating those countries. It might be that a different institution, one that was
itself independent, would be better able to provide measures that were not
subject to manipulation. Similar concerns have been raised regarding the role
of credit-rating agencies in the 2008 financial crisis, as the firms that rated
mortgage-backed securities were being paid to do so by those who were creat-
ing those securities. The credit-rating agencies defence of their actions is that
they were incompetent rather than corrupt in setting overly optimistic ratings
for the safety of these securities.

In sum, the problems of unintended consequences are real ones. They po-
tentially undermine the usefulness of many measurement strategies and force
us to think carefully about who should be designing and implementing mea-
surements that will be used for high stakes purposes. There is some temptation
to despair after one has read about enough such examples. If we cannot use
measures for anything without creating bad incentives for both those entities
being rated and those creating the ratings, what is the point of generating them
in the first place? Can we only create measures so long as we do not try to use
them for anything important? Surely it is not wrong to do any evaluation of
police, foreign aid, and the quality of educational institutions, given the public
resources that goes into funding all three?

If we could measure exactly the quantity that we wanted to measure—our
preferred conceptualisation of what it means for policing or foreign aid or
education to be successful—these problems would go away. The incentives
would be perfectly aligned: actors optimising for the measure would be opti-
mising for the concept, which is what we want them to do. The problem comes
from the measurement error: the discrepancies between the measures and the
concept of interest. This means that as we think about deploying measurement
strategies, we need to think carefully about measurement error not just because
we might come to the wrong conclusions about whatever it is we are measur-
ing, but also because those measurement errors might induce behaviour that
undermines the value of the measurement scheme for evaluation.

https://www.ft.com/content/c611a877-9a98-40d4-995d-e69d901df6f6
https://www.ft.com/content/c611a877-9a98-40d4-995d-e69d901df6f6
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1.4.4 Problems of Malign Intentions

The preceding discussion was about the unintended consequences of mea-
surement, which are sometimes bad. Sometimes the intended consequences of
measurement are bad, or at least are considered bad by some people. In dis-
cussing these issues, it is important to make a distinction between the problem
discussed in the previous section and the one discussed in this section. The
former is about the way that measurement can shape which problems we are
attentive to and, if poorly deployed, may therefore misalign incentives with
the goals we actually have. The latter is about the way that measurement has
been used to enforce social hierarchy and control: measurement can be an
instrument of power, whether for good or for ill. The last section was about
unintended bad consequences of measurement; this section is about cases
where the intended consequences of measurement were bad.

Most of the readers of this book will be very familiar with the ways that so-
cial measurements are used intentionally to shape behaviour, because most of
the readers of this book have attended or are attending university. Educational
systems are, viewed in one way, a giant scheme to incentivise certain kinds of
behaviour as opposed to others, through the use of social measurement.

In the UK, at the end of an undergraduate degree, students are awarded a
classification: First-class honours, Upper second-class honours, Lower second-
class honours, and Third-class honours, or an Ordinary degree. The category
labels are confusing to outsiders, but this is simply a five-category, ordinal
measurement scheme. At University College London, where I teach, there is
an interval level measurement scheme underneath the ordinal categories, with
each of the classifications covering a range of results on a 0-100 scale. The
interval-level measures are constructed via a convoluted weighted average of
0-100 individual module/course marks, each of which conventionally does
not use the full 0-100 range. Years 1, 2, and 3 have relative weights 1, 3 and 5,
respectively, with further complicated rules regarding how many modules
count in which years.18 18 https://www.ucl.ac.uk/basc/current/

degree/classificationAt a basic level, the purpose of classification is to A) provide a signal to
the broader world about which students understand the content of the de-
gree more versus less well and to B) incentivise students to aim for a greater
understanding of the content of their degree. Is this a problematic incentive
scheme? What if the real value in a university education ought to be something
besides being able to write essays that your examiners like? What if most of
the learning comes from the parts of being a student that we are less good at
assessing? The unintended consequence worry is that focusing on maximising
your marks means that you end up with less of the things we would like you
to learn. The intended consequence worry is that the whole thing is part of a
malign system of social control in which we have been slowly training you to
do whatever tasks you are told to do and rewarding those of you who will not
cause trouble later with high degree classifications to signal to the rest of the

https://www.ucl.ac.uk/basc/current/degree/classification
https://www.ucl.ac.uk/basc/current/degree/classification
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world that you will be well-behaved.19 19 “The Repressive, Authoritarian Soul of
Thomas the Tank Engine & Friends”, The
New Yorker, 28 September 2017.

The short answer is that, despite these negatives associated with incen-
tivised measurement and the undeniable fact that it is in fact a social control
mechanism, “we”20 think that not doing the measurement at all would be 20 And by “we”, I mean no one in particular.

That is the beauty of the thing. I am just a
well-behaved cog like the rest of you.

worse. We want to make you do certain things that we think you would not
otherwise do, that is the point. Beyond signalling to the broader world that
you are the kind of person who can “do well” at stuff, classification provides
some information that you did not merely do enough to get admitted before
you arrived, but that you actually learned things while you were here that you
might remember and be able to apply later. Marks and classifications incen-
tivise you to actually learn the material, which we (the faculty) really do think is
a valuable use of your time. We recognise that it is likely to be less immediately
exciting than spending time with your friends, so we need to incentivise you by
committing to tell your future employers whether you learned the material or
not.

So if you feel like degree classification and course marking are all a scheme
to control students, you are correct. The normative question we are not going
to engage with here is whether it is a good scheme, all things and alternatives
considered.

I teach at a university with a rich institutional history of measurement for
purposes of (what almost everyone now agrees were) malign social control.
One of the important figures in the early development of University College
London is Sir Francis Galton (1822-1911), who donated the residue of his estate
to the university in 1911. There was (until 2020) a Galton laboratory, lecture the-
atre, professorship, etc. Galton was not merely a donor, but also an important
early statistician, with work on correlation, bivariate normal distributions and
regression analysis, among other contributions.

In one of his most cited papers, Galton described a contest where peo-
ple guessed what the weight of an ox would be after it was “slaughtered and
dressed”. He tabulated the guesses of the hundreds of participants, and reported
in the journal Nature that the median guess was just 0.8% off of the truth of 1198
lbs. He made an argument, embedded in the article title “Vox Populi” that this
was an endorsement of democratic methods, because on average the people
got it right, “This result is, I think, more creditable to the trusthworthiness
of a democratic judgment than might have been expected.” This idea of the
“wisdom of crowds” has been quite widely applied.21 21 When you go back and look at the data, the

5th percentile guess was 1074 lbs and the 95th
percentile guess was 1293 lbs. The attendees at
the “West of England Fat Stock and Poultry
Exhibition” were very good at assessing the
weight of cattle by eye, but is unclear that this
really tells us much about democracy. This
is neither the first nor the last instance of a
researcher showing a cute empirical result
and then claiming it tells us something far
more general than it plausibly can.

Galton’s entire career was deeply shaped by “The Origin of Species”, pub-
lished by (his cousin) Charles Darwin in 1859. Charles Darwin’s subsequent
“The Descent of Man” (1871) in turn built on Galton’s work on the implications
of evolution by natural selection for understanding human society. Galton in-
vented the term “eugenics” to describe the idea that the success of human civil-
isations was determined in part by whether they selected reproductively for
human ability. Galton’s gift to UCL created a Chair in Eugenics (professorship)
for Karl Pearson, for which he defined eugenics as “the study. . . of agencies

https://www.newyorker.com/culture/rabbit-holes/the-repressive-authoritarian-soul-of-thomas-the-tank-engine-and-friends
https://www.newyorker.com/culture/rabbit-holes/the-repressive-authoritarian-soul-of-thomas-the-tank-engine-and-friends
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under social control that may improve the racial qualities of future generations
either physically or mentally” (MacKenzie, 1981, p15). While the kinds of policies
that Galton and later eugenicists were willing to endorse varied, they shared a
common orientation towards this goal.

Karl Pearson held the Chair in Eugenics from 1911-1933, after which it was
held by Ronald A Fisher from 1933-39. Pearson founded the statistics depart-
ment at UCL and made a large number of contributions to early statistics. It
is difficult to identify a statistician who has ever made greater contributions
to the field than Fisher. One common thread running through all three is that
Galton, Pearson and Fisher were significant figures in the development of
developing social measurement for the purposes of “scientific racism”. So-
cial measurement was central to the project of scientific racism. But it wasn’t
just that these men developed statistical methods and then applied them to
their eugenics projects, MacKenzie (1981) argues that many of the key statis-
tical insights that these men had were in fact shaped by the kinds of eugenic
arguments that they wanted to make.

Figure 1.2: Plaque at 42 Rutland Gate, London
SW7 1PD, installed in 1931.

The measurement of “human intelligence” was particularly central to this
project, precisely because all the people involved viewed measurement as
central to science, just as I have argued earlier. The measurement of human
intelligence motivated the development of some of the core measurement
methods that are covered in this book. It is important to note that not everyone
who was interested in the measurement of human intelligence around the turn
of the 19th to 20th century did so with an orientation towards ranking and
classifying human “fitness” in either a social or evolutionary sense. As noted
by Gould (1996), the creator of the original IQ test, Alfred Binet (1857-1911) was
interested in developing methods to identify students who were struggling and
in need of remedial help. In his writing about the test that he developed for
the French government, he emphasised that intelligence was multidimensional
in its forms and malleable rather than fixed by genetics. His test was meant
as a rough diagnostic summary of how individuals did on tests rather than
as a method of uncovering some underlying fact about the individual. In the
language of this book, he was clear about the fact that he was engaged in a
pragmatic measurement project.

However, very quickly the idea of intelligence testing was seized on as a
way of providing evidence for the claim that intelligence was a real attribute
of people and was largely unidimensional and therefore rankable. That is, a
lot of researchers in this era assumed they were engaged in a representational
measurement project. The UCL psychologist Charles Spearman (1863-1945)
invented factor analysis, which we will cover in Chapter 11. His goal in doing
so was to link intelligence test items to an underlying model of how they arose
from a rankable underlying general scale of intelligence, which he called g.
Thus both an important statistical method and its most common misuse were
born together. The application of the statistical method of factor analysis does
not justify a claim that you are engaged in representational measurement. The
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factors you discover with such methods may or may not exist, factor analysis
cannot tell you. Factor analysis is nonetheless useful as a pragmatic summary
of the correlation structure in multivariate data sets, even though it cannot
(alone) tell you how that correlation structure arose.

Subsequently, others went on to argue that this unitary intelligence was
largely fixed from birth rather than changeable, that is, that it is hereditary.22 22 Pearson and Spearman are both known

to introductory students of statistics for the
similar correlation coefficients associated
with their names and respectively held chairs
in Statistics and Psychology at UCL in the
same period. Their chairs passed to Ronald A
Fisher and Cyril Burt. Burt was a hack who
fabricated data later in his career and also
attempted to take credit for factor analysis
after Spearman died. While Spearman was
not particularly interested in the eugenics
project, the other three men were all strongly
committed to the idea that intelligence was
largely hereditary, that there were class and
racial differences in this innate intelligence,
and therefore that efforts to remediate class
and racial differences were at best pointless.
(Gould, 1996, p302)

Again, this view was not justified by the data, but this conclusion is appealing
to those who want to justify existing social stratification and argue against
any investment to close observed differences in social outcomes by class back-
ground, race/ethnicity, or gender.23 Or indeed, if you want to argue for the

23 But see Manski (2011) for an explanation
of why even hereditary variation would
not imply that no actions to reduce these
differences is justified.

eugenic ideal of improving human populations by “encouraging” some to
reproduce and others not to. A unidimensional, measurable intelligence facil-
itates this goal: once you have a ranking the only remaining task is to decide
where the cutoffs should be. The grim history of this academic tradition is
detailed in The Mismeasure of Man by Stephen Jay Gould (1996).

This is the last that I will discuss the measurement of human intelligence
in this book. The reason I will not focus on the intelligence example is that
there are plenty of other, less vexatious, examples where it is easier to have a
conversation about the potential for disconnects between what you want to
measure and what you are actually measuring.24 Similarly, the claims about

24 If you are really interested in the intelli-
gence example, read “g, a Statistical Myth” by
Cosma R Shalizi.

the heredity of intelligence are really (spurious) claims about causality, and
we will be using other examples to elaborate the point that even a sensible
measurement strategy is not necessarily a sound causal inference strategy.25

25 See Gould’s book, and also “Yet More on
the Heritability and Malleability of IQ” by
Cosma R Shalizi

Even though they are often the more evil cases, the cases where social
measurement is used to justify and enforce social hierarchy and control are,
I would argue, the lesser threat to the value of the project of quantitative so-
cial measurement than the previous problems that I discussed. If people have
malign goals, they are likely to pursue those with or without the aid of quan-
titative measurement and the data analysis that it enables: the measurement is
not really the problem. Indeed, racists are not the only people who use quanti-
tative evidence to try to prove something they have already decided is true, this
is done by advocates of all kinds, for causes that one would endorse as well as
abhor.

The better you understand the theory and practice of measurement, the
more readily you can see where people are making errors, and explain what
those errors are in a precise way. The stakes are high in much the same way
they are in other engineering and scientific domains. Physical mismeasurement
can lead bridges to collapse; chemical mismeasurement can lead to people
being poisoned; social mismeasurement can lead to profound and enduring
injustice. Misuse is not intrinsic to the project of measurement itself, but the
risk of misuse certainly is. Similarly, bridges only collapse if you try to build
them in the first place, but we tend to treat their utility as self-evident. We
usually have good reasons to try to measure the things whose mismeasurement
may cause problems. The historic misuse of social measurement is a reason to

http://bactra.org/notebooks/523.html
http://bactra.org/notebooks/523.html
http://bactra.org/notebooks/520.html
http://bactra.org/notebooks/520.html
http://bactra.org/notebooks/520.html
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study and understand measurement well, not a reason to view it as something
bad that should be avoided.

1.5 Conclusion

If you feel uncomfortable about the proximity of the material in this book
to the intellectual history described above, that is entirely reasonable and
indeed helpful. Social measurement, like social science in general, is a human
enterprise and has been used by humans for good and for ill. The same is
true of research in the biological and physical sciences. Humans can make
antiobiotics and vaccines or they can make biological weapons; humans can
produce nuclear energy or nuclear weapons. Expertise in most scientific fields
can be—and has been—used to help as well as to harm.

The reason I discuss this history here, at the outset of this book, is that
it reinforces the importance of understanding social measurement. Social
measurement already shapes your lives in profound ways. It is not going away.
It can be used to make peoples’ lives better or worse. Bad measurement causes
people to make bad decisions every day. As I will discuss in Chapters 3, 4,
and 5, some measures are too unreliable, too biased, or otherwise unsuited to
be useful for some applications. Knowing the criteria by which to evaluate
measures enables you to take advantage of measures when they are suitable for
an application and avoid using measures for applications in which they will
mislead.

This book is focused on how to do social measurement carefully, partic-
ularly for the kinds of social science concepts that are difficult to measure.
Conveying how to do measurement well requires talking about common
modes of failure. In the next chapter, we will start by defining measurement
error and thinking about when measurement error is likely to be consequential
for analyses involving those measures.





2
Conceptualisation and Causality

Is a country a “democracy” because it has elections, or does a country have
elections because it is a “democracy”? Is an individual highly “creative” because
they generate a lot of new ideas, or does an individual generate a lot of new
ideas because they are “creative”? Is a person “conservative” because they take
on a collection of “conservative” positions or is that person taking on those
positions because they are a “conservative”?

All of these are question about the conceptualisation of (i.e. how we think
about) particular concepts, but they are also questions about causal relation-
ships. Specifically, they are questions about whether these concepts are sum-
maries of the data we observe in the world that we use to discriminate between
cases or whether the concepts describe attributes of the causal processes that
generate the data we observe in the world. If we say that what it means to be a
democracy is that a country holds regular elections plus some other require-
ments, we are saying that the concept of “democracy” is a summary that we are
using to discriminate between different states. If, instead, we say that coun-
tries which are democracies will regularly generate elections, we are saying
that “democracy” is a causal attribute of states that tends to generate certain
observable consequences.

This distinction between concepts that are discriminative between differ-
ent patterns of observations versus concepts that are part of the generative
process for those observations is far more important than is often appreciated.
Our written language is often ambiguous when it comes to key concepts. As
noted above, the same words often are consistent with both interpretations,
and we often slip between them without being clear that we are doing so. “Pro-
fessor X published six papers last year, she is incredibly productive. I wish
that I were that productive.” Is productive a summary of this output of papers
that we use to discriminate between different scholars or is it a summary of
some fundamental properties of Professor X that enabled her to generate more
papers?

In order to properly evaluate these questions, we need to start by thinking
about the relationship between concepts and measures, to introduce the idea
of indicators as data that are used to form measures, and then to carefully
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think about the causal relationships between the indicators and the concept
of interest. In order to do these things in a coherent way, we have to make a
critical distinction between the estimand `, which is the concept that we want
to measure, and the estimate ;, which is the actual measure that we are able to
construct. Why is this distinction important?

The estimand is the object of inquiry—it is the precise quantity about which we
marshal data to draw an inference. Yet, too often social scientists skip the step
of defining the estimand. Instead, they leap straight to describing the data they
analyze and the statistical procedures they apply. Without a statement of the es-
timand, it becomes impossible for the reader to know whether those procedures
were appropriate. The methodological approach becomes tautological: if the
thing to be estimated is defined within a statistical model, it cuts off productive
consideration of a broader class of models that could accomplish the same goal.
(Lundberg et al., 2021)

We cannot evaluate the quality of any measure without making a distinction
between the thing we wanted to measure and the constructed measure itself.
This means we need to be able to articulate clearly what it is that we wanted
the measure, which is often a significant challenge in itself because it is not
something for which we already have data.

2.1 The Relationship Between Concept and Measure

From the representational perspective, in order to measure something there
must be some causal connection from the thing we are trying to measure `
to the data that we use to construct the measurement ;. I will refer to such
a relationship between target concept and measure as generative: changes
in the target concept generate changes in the measure through a direct causal
pathway.1 1 This terminology is borrowed from com-

puter science language for distinguishing
between different types of classifiers.

mµ

O

Figure 2.1: Representational measurement
assumes that the target concept ` is part of
the causal process that generates the measure
; of that concept.

Figure 2.1 depicts this with a directed graph in which there is a causal path-
way from ` to ;: changes in the measure are caused by changes in the target
concept. If something changes in the world (`), then this will lead to changes
in our measure. For this to be true, ` needs to capture some feature or features
of the causal process that generates our measure. This is obviously the case for
something like using a ruler to measure the length of an object: if the object
gets shorter, that will cause you to get a smaller value of the measure when you
follow the measurement procedure of holding the ruler up next to the object
and reading off the difference in ruler marks at the two ends of the object.

This logic becomes less obvious when we turn to a social science concept
like democracy. For the concept of democracy to be measurable from a rep-
resentational perspective, it needs to be the case that there is a latent extent to
which a country is a democracy, and that changing this will change whatever
observable indicators (like whether we observe regular elections) form the basis
of calculating the measure. We will unpack the details of where indicators fit
into this causal graph later in this chapter.

https://en.wikipedia.org/wiki/Generative_model
https://en.wikipedia.org/wiki/Generative_model
https://en.wikipedia.org/wiki/Generative_model
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The directed graph also highlights the key threat to the quality of measure-
ment: variation in the measurement ; can be caused not only by changes in
the target concept `, but also by changes in other factors$ that influence the
measure. It is from these other factors$ that the measurement error n" arises.

mµ ?

Figure 2.2: Pragmatic measurement does
not specify a particular causal relationship
between target concept ` and measure ;.

From the pragmatic measurement perspective, these causal relationships
between ` and ; could go either way (Figure 2.2). They might be generative,
where ` is part of the causal process that generates ;, but they might also be
discriminative, where ; is what defines ` (Figure 2.3). The defining feature
of the pragmatic perspective is that it lacks the strong commitment about
the direction of these causal relationships between ` to ;. It might be that
` → ;, as before. It might, however, be that ` ← ;. That is, that the concept
is being defined by the measurement strategy. What it means to be a democracy
might be defined by how we choose to measure it. If a country starts holding
regular elections, it becomes (more of) a democracy. The measure discriminates
between different levels of the concept, between the sorts of countries we have
decided to call “democracies” and the sorts of countries that we have decided to
not call “democracies”.

m µ
Figure 2.3: Discriminative measurements are
those where the measure ; defines the target
concept `.

We have now discussed two distinctions: representational versus pragmatic
and generative versus discriminative. Representational measurement aims to
create generative measures: if the goal is to describe quantities that in some
sense already exist in the world, those quantities need to be part of the causal
processes that affect how entities in the world interact and generate observable
quantities. Pragmatic measurement may create generative or discriminative
measures. We might hope to describe quantities that in some sense already
exist in the world, affecting causal processes, but we might also want to define a
new concept in the world in order to discriminate between different cases.

2.2 Example: Flipping a Biased Coin

Figure 2.4: A bent penny (heads up).

The example of flipping a potentially biased coin is ubiquitous in the teaching
of statistics, but it is very difficult to construct a coin that has the shape of a
coin and which is substantially biased with respect to flipping (Gelman and
Nolan, 2002). Serious and non-subtle interventions are required to yield a sub-
stantial bias. Figure 2.4 shows a US 1 cent coin which has had an unfortunate
accident.

In a short trial, when flipped onto a hard surface on which it bounced until
it came to rest, this coin came up heads 40 times and tails 60 times in 100 trials
(see Figure 2.5). Thus, we can define a measure ; = heads

trials = 40
100 = 0.4 that is

the proportion of heads observed in some number of trials. We can also define
a target concept ` that is the proportion of heads we would observe in the long
run, in a very large number of trials.

H T

HO

)

Figure 2.5: A tally of 100 flips.

In this instance, it is easy to see the conceptual distinction between ; and
`. The former is the proportion we calculate in a finite set of trials, the latter
is what we would calculate if we could keep doing trials forever. In this case,
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recalling our knowledge of basic statistics, we can see that ; will have a lot of
good properties as an estimate of `. It is unbiased (� [;] = `) and consistent
(;

>
→ `).
The potential for a numerical discrepancy between ; and ` when ; is

calculated based on a small number of trials is familiar. As you will know from
introductory statistics, if you do 100 trials of a “heads vs tails” Bernoulli process
like this one, the proportion of heads will vary substantially. As a consequence,
100 trials does not provide very strong evidence that the probability of heads
is actually below 0.5 for this coin (the p-value for a two sided test of the null
that ` = 0.5 is 0.06) but my research assistant got bored and did not want to
do more trials. Previous research suggests that bending a coin in this way will
reduce the heads probability by about this amount (Izbicki, 2011).

The tricky question for us here is what sort of concept we think ` repre-
sents. Is ` a ‘real’ property of the coin that we have sought to measure through
the tedious procedure of repeatedly flipping it? Or did we collect some data,
form it into a measure (proportion of heads in some number of trials) and then
invent a concept (the long run heads probability of this particular object) that is
actually defined by our measurement procedure?

It is clear that, if you want to say that ` is a real property of the coin, we
have to recognise that this property is actually a summary of other more fun-
damental features of the coin (eg size, mass, and shape) as well as the context
of the trial (eg the height from which it is flipped, the initial distribution of
momentum and angular momentum, the properties of the surface on which it
will land). If you had all of this information and a sufficiently good computer
program for simulating the physics of the flips, you could perhaps simulate the
coin flips and estimate the probability simply from the geometry of the coin.
The quantity ` is a summary of properties of the coin and of the trial that is
relevant to this particular type of trial, but it is not actually a property of the
coin alone.

So, if we seek to estimate `, whether by tedious physical coin flipping or
elaborate computer simulated coin flipping, are we engaged in representational
or pragmatic measurement? Are we seeking a measure that of a generative con-
cept or a discriminative concept? In favour of the representational perspective,
there is a physical process that is being characterised: the coin clearly exists in
the world and the flipping process is a physical process (albeit one that is not
all that precisely defined). However, in favour of the pragmatic perspective, it
is clear that this quantity ` is defined in terms of the measurement strategy ;:
it is just the long-run limit of running these trials indefinitely. These are not
mutually exclusive perspectives in general or in this instance.

In contrast, with respect to whether the concept is generative or discrimina-
tive, the answer is clearer. It is correct to say that ` is a generative concept, it is
clearly possible to change ` by reshaping the coin in a way that will change the
measure ; (at least if we do enough trials). Causality runs from ` to ;, via the
observed values of the individual coin flips. Those coin flips, the data we collect
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to construct the measurement ;, are an example of an indicator, which is the
topic of the next section of this chapter.

Measuring the long run probability of heads for a bent coin is a toy example,
but it highlights some of the challenges with thinking about measurement.
The good news is that we typically do not need to make a strong commitment
about whether we are doing representational or pragmatic measurement, as the
latter is flexible and we can always aspire to the former. We do, however, need
to be clear on whether we are engaged in measuring a concept that describes
part of the causal process that generates the observable data we are using to
measure that concept, or whether we are defining a concept as a discriminative
summary of some observable data that are interested in. This distinction,
between generative and discriminative measures, is consequential for how we
think about different measures and the appropriate methods to construct them.

2.3 Indicators

Sometimes measures arise directly, but more often they are constructed as
functions of one or more observable indicators. What qualifies as an indicator,
exactly? An indicator is an already measured quantity that provides evidence
regarding the concept that we aim to measure.

Critically, indicators are partial constituents of or noisy manifestations
of the underlying concept, not the concept itself. If you have ever watched
sports and thought that the better individual/team did not win, you recognise
this distinction between a concept of interest and indicators of that concept.
Winning a particular match is an indicator of being a better individual or team,
but it is not the same as being a better individual or team.

If I am giving an examination in a course, with the aim of measuring how
well students understand about the content of the course, the quality of students’
answers on each question are indicators of that target concept. If we take a
representational perspective on the exam, students really have some level of
understanding of the course material, and this causally influences whether they
answer the questions in ways that get high marks. Variation in the indicators
is caused by variation in the target concept: if a student improves their under-
standing of the material, they will (at least in expectation) end up with a higher
mark on the exam.

If we instead take a pragmatic perspective, one possibility is that what it
means to have a high “understanding of the course material” is just that you get
high marks on the exam. The concept then is simply a summary of the indica-
tors. If you followed this definition of `, it would become impossibly to define
what it means for an exam to be a poorly designed measurement scheme for
“understanding of the course material”, ; = ` by definition. In practice though,
nothing stops you from taking a pragmatic perspective on measurement and
still maintaining a definition of ` that is distinct from the procedure that gen-
erates ;. In this example, you can have an ideal of what “understanding of the
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course material” entails, and recognise that the measurement procedure for ;
is at best approximating that ideal. This is true even if you recognise that your
ideal of understanding of the material ` is a summary of students’ ability to
do a set of tasks well (perhaps a larger set than can be examined) rather than a
generative attribute of students that causally generates better or worse exam
answers under some causal process. From this perspective an exam ; might
be poorly designed for measuring ` because it includes tasks that are unrep-
resentative of the larger set or because it includes tasks outside that larger set.
Neither taking a discriminative perspective on the causal relationship between
concept and measure nor taking a pragmatic perspective on the definitional
relationship between concept and measure requires you to give up on the pos-
sibility of evaluating the quality of a measurement strategy. This is a point that
we will return to below and in Chapter 3.

The commonly used terms proxy variable and surrogate variable are exam-
ples of indicators that are typically used by themselves, as a measure of a con-
cept. Upton and Cook (2014) define a proxy variable as “a measurable variable
that is used in place of a variable that cannot be measured” and a surrogate vari-
able as “a variable that can be measured (or is easy to measure) that is used in
place of one that cannot be measured (or is difficult to measure). For example,
whereas it may be difficult to assess the wealth of a household, it is relatively
easy to assess the value of a house.”

More generally, when we talk about indicators—for example, whether
countries hold elections as an indicator of whether they are democracies,
whether people say they are happy as an indicator of whether they are happy,
whether the prices of particular goods have increased since last year as an indi-
cator of inflation—there is some translation needed to get from these measur-
able quantities to the concept that we are actually interested in. Proxy/surrogate
variables are often uncalibrated, which is to say that while they are indications
of the presence/absence or level of the target concept, they are unlikely to be
on the same scale as that target concept. You might know the assessed value of
someone’s home, and that people with greater wealth will tend to live in homes
that are more valuable, but clearly you cannot simply use the numerical value
of the home as the numerical value of wealth, the latter is likely to be some
multiple of the former. Figuring out what that multiple typically is, and thus
how to translate home values into a(n imperfect) measure of wealth, is the task
of calibration (this is discussed further in Chapters 6.2 and 8).

Whereas proxy/surrogate variables are single indicators of a target concept,
in cases like an exam with multiple questions used for measuring student
understanding or a basket of goods used for measuring inflation, calibration
involves combining information from multiple indicators. In order to do
this, we need some information about the nature of the collective relationship
between these indicators and the target concept.

mI2
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Figure 2.6: Representational measurement
perspective on the causal relationships
between target concept `, indicators � ,
measure ; and other factors$.

Figure 2.6 shows the causal relationships that might exist between concept,
indicators and measure, from a representational and generative perspective.
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There is some causal relationship from the target concept ` to the indicators �1,
�2, etc, but there are also other (potentially unknown or unobserved) factors $
that are influencing the indicators as well. The measure ; is a function of the
indicators. The graph highlights the key threat to the quality of measurement,
discussed more later in this chapter. The measurement is potentially shaped
not only by the target concept, but also by any other factors that influence the
measure via its constituent indicators.
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Figure 2.7: Causal relationships between
target concept `, indicators � , measure ; and
other factors$ in pragmatic measurement.

From a pragmatic perspective, illustrated in Figure 2.7, our measure is a
function of the indicators, but the nature of the causal relationship between
the indicators and the concept of interest is unclear. Maybe we are measuring
something that exists in the world and that is shaping the indicators, as in
Figure 2.6, but maybe we are instead engaging in a discriminative exercise
summarising differences between sets of indicator values in a way that we
define that is distinct from whatever causal processes created those indicator
values. The measure is definitely providing a summary of the indicators, but
it may or may not reflect some component of the generative process for the
indicators.

Looking at these graphs, we can see two immediate things we are going
to need to understand in order to do measurement, regardless of whether we
take a representational or pragmatic perspective. First, we need to figure out
what qualifies as an indicator and which indicators we should use. Second,
we need to figure out how we put those indicators together in order to form
a measure. In cases where there is a generative process which we want to
measure some aspect of, we want to do this in a way that closely reflects the
causal connections between the target concept and the indicators, so that our
measure approximates the target concept as well as possible. In cases where
we are engaged in a discriminative exercise, we are going to need to find some
other criteria that we can use to decide how to put the indicators together,
because we cannot rely on the causal processes that generate those indicator
values to provide guidance.

2.4 Supervised versus Unsupervised Measurement

Figures 2.6 and 2.7 highlight an important practical question that arises once we
contemplate measurement using multiple indicators. How do we go from �1,
�2, etc to ;? Where does our information about the nature of the relationship
between indicators and the target concept come from? How do we figure out
how to combine multiple indicators into a single measure that reflects those
relationships to the target concept? To a large extent, different possible answers
to this question are the content of the rest of this book. There are three kinds
of general approaches that we will see:

1. Theory: we know the relationship between the indicators and the target
concept because that relationship is dictated by theoretical arguments
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and/or known features of the relationship between the target concept ` and
the indicators � 8.

2. Supervised: we have some kind of data set that enables us to estimate the
relationships between the indicators and the target concept.

3. Unsupervised: we use our data set of indicators in order to learn which
relationships between indicators and the target concept would enable us to
most effectively explain variation in the indicators.

Theoretical approaches are discussed in Chapter 6 and again briefly in
Chapter 10, supervised approaches in Chapters 7, 8, 9 & 10, and unsupervised
approaches in Chapters 11, 12, 13, 14 & 15.

These different approaches do not map straightforwardly onto whether we
are engaging in generative versus discriminativemeasurement. In cases where
we have a generative process that connects the concept of interest to the ob-
served indicators there is some prospect of recovering it using unsupervised
methods. However, we can also apply unsupervised methods for purposes of
discrimination, albeit with the limitation that we can only claim to be sum-
marising (co-)variation in the indicators. In cases where we have a generative
process, we may also apply supervised/theoretical approaches to mapping
indicators onto measures, leveraging existing knowledge and information to
improve the quality of measurement. However these approaches are particu-
larly valuable when we are engaging in discriminativemeasurement, because in
such cases we cannot rely on the process that generates the indicators to pro-
vide any information about how to map them onto our concept(s) of interest.

In general, stronger theory and stronger supervision are good things, re-
flecting greater pre-existing knowledge of the relevant relationships between
indicators and the target concepts that we wish to measure. Using these meth-
ods makes it more likely that you are measuring what you wanted to measure.
Unsupervised methods excel at summarising (co-)variation in sets of indicators,
but can provide no guarantees that the measures recovered measure anything
in particular. Sometimes this is fine and useful, but it comes with a number of
risks that we will discuss in the later chapters of this book.

2.5 Conclusion

This chapter has elaborated several theoretical distinctions that are relevant
to understanding different types of measurement problems. The first of these,
representational versus pragmatic measurement, is one related to the definition
of a concept in relation to a measure. The second of these, generative versus
discriminative measurement, is related to the causal processes that connect a
concept and a measure. These are related in that representational measurement
is necessarily generative in its perspective on causality, but they are not the
same distinction in that pragmatic measurement is compatible with concepts
that are either generative or discriminative.
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Finally, we have introduced the idea of an indicator, and then have briefly
introduced the distinction between unsupervised, supervised and theoretical
approaches to determining how indicators are combined in order to construct
a measure. In the next chapter, we proceed to defining levels of measurement
and measurement error.





3
Measurement Error

In order to have sensible discussions about different measurement strategies
that we might want to use later on in the course, we need to have a language in
which to have those conversations. What is the thing we are trying to measure?
What constitutes a measurement? What are the ways in which a measurement
can be good or bad? These are questions we need to think about before we can
do much else.

We already have begun to build a language for considering these questions.
We have defined the idea of a target concept that we are aiming to measure `,
and noted that an actually constructed measure ; may not be equal to that.
The core problem of measurement is constructing ; such that it is as similar
to ` as possible. Ideally, ; = `, however entirely eliminating all discrepancies
between the two, measurement errors, is seldom possible. In order to be precise
about what we mean by the concept of measurement error, it is necessary to
start by defining the levels of measurement that might be appropriate to different
target concepts `.

3.1 Levels of Measurement

Figure 3.1: Universal Rating Scale
https://xkcd.com/2329/

The mathematical details of a measurement procedure as well as the way we
talk about measurement error usually differ according to the level of measure-
ment that is appropriate to the target concept `. You may already be familiar
with the classic distinction between different levels of measurement (Stevens
et al., 1946):

• Nominal: Numeric values convey neither ordering nor distance
• Ordinal: Numeric values convey ordering but not distance
• Interval: Numeric values convey ordering and distance
• Ratio: Numeric values convey ordering, distance, and have a meaningful
zero point

The only operations that can be used on nominal measures are tests of
equality = and inequality ≠, nothing else. Ordinal measures allow one to also
use operations involved in sorting, such as ordering tests like greater than >
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and less than <. Interval level measures can further be used to assess distance
and difference, allowing meaningful use of addition + and subtraction −. Fi-
nally, ratio-level measures additionally allow meaningful use of multiplication
× and division /. The four levels of measurement are themselves ordered, all
operations that can be applied to a given level of measurement can also be
applied to those further down the list.

Nominal measurements typically involve typologies, categorizations and
classifications. These can be anything where there is no necessary logical
ordering between categories, such as types of transit (1 = foot, 2 = bike, 3 =
car, 4 = bus, 5 = train, 6 = plane), type of electoral system (first-past-the-post,
two-round, party-list proportional, open-list, etc), and many others. There
may be ways that you could typically sort the levels (eg by speed or number of
passengers for the transit case, by majoritarian vs proportionality for electoral
systems) but these are not intrinsic to the categorization.

Ordinal measurements typically involve classification that has a qualitative
link to relative levels of an underlying concept. This includes grade classifica-
tions (A/B/C/D/F or 1st/2:1/2:2/3rd), Likert scales in surveys (strongly agree
/ agree / neither agree nor disagree / disagree / strongly disagree) and many
others.

Interval measurements (that are not ratio-level) typically arise in cases
where difference and distance are more relevant than absolute levels, or the
latter is difficult to define. Map coordinates on the Earth’s surface are often
interval scales because there is no (non-arbitrary) zero point. The longitude of
Copenhagen is about 12.5 degrees east and the longitude of Helsinki is about
25 degrees E. Nonetheless, Helsinki does not have twice as much longitude
as Copenhagen, because while the difference between these is meaningful,
the ratio is not. This ratio would only be meaningful if you wanted to know
the east-west distance from the Royal Observatory in Greenwich, which is
arbitrarily set as the 0 point for longitude. Arbitrary specifications of 0—
Greenwich, England for Longitude; the freezing point of water for degrees
Celsius—are usually hints that a scale is interval-level.

Ratio measurements are distinguished from interval level measurements
by the fact that the zero point is meaningful.1 Some of these are quantities that 1 Temperature does have a meaningful zero

point: absolute zero. The Kelvin scale is a
ratio-level scale, Celsius and Fahrenheit are
interval-level scales. When you learn to do
calculation with the ideal gas law >+ = <')

in an introductory chemistry class, you need
to remember to use temperatures ) in Kelvin
because multiplication is only valid with a
ratio-level measure.

cannot be negative, like measures of physical length (eg in meters) or a number
of votes. In other cases, like the net budget balance of a government, the 0
point is special (balanced budget) but both positive and negative values are
possible. These are often the result of taking differences between two strictly
positive ratio-level quantities (eg government revenue minus government
expenditure).

Much of this book discusses interval-level and ratio-level measurement of
scales. The aim of creating measures that are actually interval-level provides
useful structure for several of the methods we examine. Many of the mea-
surement techniques discussed in this book yield interval-level rather than
ratio-level measures, but there are important exceptions discussed in Chapter 6

https://en.wikipedia.org/wiki/Absolute_zero
https://en.wikipedia.org/wiki/Kelvin
https://en.wikipedia.org/wiki/Celsius
https://en.wikipedia.org/wiki/Fahrenheit
https://en.wikipedia.org/wiki/Ideal_gas_law
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and to a lesser extent Chapter 9. Even creating interval-level measures of many
social science concepts is a struggle, ratio-level measures are not always feasi-
ble. Chapters 9, 10 13 & 14 discuss ordinal-level and nominal-level measurement
of classes or categories.

Whether a given concept is amenable to measurement at these different
levels is to some extent dictated by the concept and to some extent dictated by
the indicators that you have to work with. For example, it is frequently the case
that while a concept could theoretically be understood to exist on a ratio or
interval scale, you lack data with which to measure that concept in a way that
recovers reliable information about relative distances, and so your measure is
explicitly or effectively ordinal.2 2 This is a reminder that levels of measure-

ment do not map perfectly onto whether
variables are discrete or continuous. So it is
possible to have continuous, ordinal-level
measures. It is also possible to have discrete,
interval-level or ratio-level measures (eg
counts).

3.2 Defining Measurement Error

There are different definitions of measurement error appropriate to different
levels of measurement. To define measurement error, the discrepancy between
` and ;, you need to use mathematical operations like ≠, − and / that are not
all meaningful for all levels of measurement.

For nominal measurements, those with no necessary logical ordering be-
tween categories (eg foot, bike, car, bus, train, plane), the only allowed opera-
tions are tests of equality. This means that the only definition of measurement
error for such measures is binary: either you have a measurement error ; ≠ `

or you do not ; = `. Formally, we can define the measurement error n; = 1 if
; ≠ ` and n; = 0 if ; = `.

For ordinal measurements, which add logical ordering between categories
(eg strongly agree / agree / neither agree nor disagree / disagree / strongly
disagree), we can use tests of equality as well as tests of ordering. This means
we can define three levels of measurement error: ; < `, ; = `, and ; > `. We
can also begin to say something about the magnitude of errors, although not in
a way that is typically very useful. If our ordered scale runs �, �, �, �, then if
` = �, a measure ;1 = � has a larger error than a measure ;2 = �. However
the possible rankings of measurement error magnitudes are only partial, as we
cannot say whether these errors are larger or smaller than the error in the case
where ` = � and ; = �.

When we move to interval-level measurements, which have meaningful
distances and differences, the use of addition + and subtraction − allows us to
define measurement error n; as the difference between the measure you have
; and the thing you wanted to measure `:

; = ` + n; (3.1)

n; = ; − ` (3.2)

This is the most frequently used definition of measurement error. For continu-
ous, interval-level quantities, where exact matches between ; and ` may never
occur, the measurement error definitions that apply to nominal and ordinal
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measurements are not especially useful because the magnitude of discrepencies
between ; and ` is the relevant question, not the mere fact of them.

With a ratio-level measurement, we can continue to apply the definition
based on the difference, but it will occasionally make sense to apply a definition
of measurement error based on the ratio between ; and `:

; = ` · b (3.3)

b =
;

`
(3.4)

log (b) = log (;) − log (`) (3.5)

Defining the measurement in this was is equivalent to defining measurement
error as a difference on a log scale.

Why would one want to do this? Imagine that you are trying to measure the
GDP of countries. A poor country might have a true per capita GDP of $500
and a measured per capita GDP of $550, while a middle income country might
have a true per capita GDP of $5000 and a measured per capita income of
$5100. If you calculate n; = ; − `, the measurement error for the poor country
is $50 and for the middle income country it is $100, the latter being larger.
However, if you calculate ;

`
, you note that the ratio for the poor country is

;
`
= 1.1 or 10% of the country’s true GDP, while for the middle income country

it is ;
`

= 1.02 or 2% of the country’s true GDP. The measurement error in
the poor country’s GDP, while smaller in dollar terms, is larger in percentage
terms, and may therefore mischaracterize the country’s economic output to a
greater extent. Depending on the application, it may make sense to think about
measurement error in these terms.

3.3 Validity, Reliability; Accuracy, Precision; Bias, Variance

When we think about measurement error, it is important to keep in mind the
distinction between the errors of individual measurements and the properties
of a set of measurements for many units. If we want to think about the proper-
ties of many such measurements, we need to put 7 subscripts on ; and `, where
7 = 1, 2, . . . indexes each of a set of measurements of the same target concept for
a set of measured units.

In the case of an nominal measure, n;7
= 1 if ;7 ≠ `7 and n;7

= 0 if ;7 = `7.
In the case of an interval level measure:

n;7
= ;7 − `7 (3.6)

While the measurement error for a single measurement is a single number,
there are multiple ways that a set of measures ; might “go wrong” as a rep-
resentation of the target concept ` across a set of units. In the following dis-
cussion I will focus on how these apply to the nominal-level and interval-level
cases, as these are the most frequent cases in application (and can often be used
for ordinal-level and ratio-level measurements, respectively).
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There are a variety of terms have been developed to talk about ways that
measures can be wrong across a set of units. For example, two different ways
that measurements can go wrong are illustrated by the contrast between the
first two panels in Figure 3.2. Panel a shows measurements scattered widely
around a target, but on average they are centred on the target. Panel b shows
points tightly clustered together, but some distance from the target. Think of
each point as a measurement and the centre of the target as the “true” value
that we are aiming to measure. Both plots show measurements that have er-
rors, but they have different patterns of errors and the distinction is very
important.

(a)

(b)

(c)

Figure 3.2: Where the large black dot is
the target `, each panel shows a set of
measurements ;7 with different properties.

There are a variety of terms that are widely used to correspond to the
characterise the patterns of errors in Figure 3.2.

panel a panel b panel c

validity low low high
reliability low high high
accuracy low low high
precision low high high
bias low high low
variance high low low

These terms are not entirely interchangeable, and not only because some
describe the things you want (validity, reliability, accuracy, precision) while
others describe the things you do not (bias, variance).3 Some have different 3 The term “accuracy” is not always used

consistently, but here I go with the ISO 5725
definition that requires both lack of bias
and also precision, as opposed to only the
former. Note that ISO uses yet another term,
“trueness” to mean the opposite of bias,
which I eschew here because it is lame.

statistical quantities associated with them and some decompose variation in
measurement error in different ways. Note that “validity” and “accuracy” typi-
cally are used to encompass all kinds of errors, whereas the terms “reliability”,
“precision”, “bias” and “variance” focus on particular types of errors.

There are a variety of names that have been given to ways one might assess
validity, some of which we will return to below. There are similarly several
common variations on the idea of reliability, which correspond to different
senses in which you might measure a quantity multiple times. If the multiple
measurements are conducted by different individuals (as in a manual coding
exercise), it is typical to refer to “inter-rater reliability” or “inter-coder reliabil-
ity”. If the multiple measurements are conducted at different points in time, it
is typical to refer to “test-retest reliability”. If the multiple measurements are
constructed using different methods of measurement, is is sometimes called
“inter-method reliability”, but note that failures of “inter-method reliability”
can arise from failures of validity in the individual methods. 4 The terms va- 4 There are further senses of reliability.

Measures of internal consistency among
items in a multi-item test or index, such
as Chronbach’s Alpha (Cronbach, 1951), are
also called measures of reliability. These are
covered in Chapter 9.

lidity and reliability do not have specific statistics associated with them, but a
number of statistics can be used to capture these concepts in different contexts.
These need to be considered separately for interval-level and nominal-level
measures.

https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en
https://en.wikipedia.org/wiki/Validity_(statistics)
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3.3.1 Interval-Level Measures

The terms “validity” and “accuracy” are usually associated with measures like
mean absolute error (MAE), mean square error (MSE) or root mean square
error (RMSE).

"�� (;|`) =
1
<

<∑
7=1

|;7 − `7 | (3.7)

"(� (;|`) =
1
<

<∑
7=1

(;7 − `7)2 (3.8)

'"(� (;|`) =

√√
1
<

<∑
7=1

(;7 − `7)2 (3.9)

Note that these are measures of “invalidity” or “inaccuracy” because higher
values of MAE, MSE or RMSE correspond to lower validity and lower accu-
racy. These can all also be viewed as measures of (in)accuracy or of (in)validity
because they capture the idea of how well you have measured the thing you
meant to measure (`). Note that since we usually do not actually know `, we
may not be able to calculate these in a given application, but they are nonethe-
less the quantity we would like to know in order to assess accuracy/validity.
Note also that they are on (or derived from, in the case of MSE) the scale of
`, so the numerical values need to be interpreted in the context of the actual
levels of ` and their variation.

Bias and variance are widely applied statistical concepts and provide a
useful decomposition of mean square error into two components. If we start
with the formula for the mean square error, we can show that this equal to the
sum of the bias (squared) and the variance of the measurement.5 5 The key step in the derivation

is to observe that the quantity
1
<

∑<
7=1 (2(;7 − ;̄7) (;̄7 − `7)) is zero

because the mean value of the measure ;7 is
defined such that the mean deviation

1
<

<∑
7=1
(;7 − ;̄7) = 0

.

"(� (;|`) =
1
<

<∑
7=1

(;7 − `7)2 (3.10)

=
1
<

<∑
7=1

(;7 − ;̄7 + ;̄7 − `7)2 (3.11)

=
1
<

<∑
7=1

(;7 − ;̄7)2 + 2(;7 − ;̄7) (;̄7 − `7) + (;̄7 − `7)2 (3.12)

=
1
<

<∑
7=1

(;7 − ;̄7)2 + (;̄7 − `7)2 (3.13)

=
1
<

<∑
7=1

(;7 − ;̄7)2 +
1
<

<∑
7=1

(;̄7 − `7)2 (3.14)

= +0@ (;7) + �70A (;7 |`7)2 (3.15)

Here, the variance of the measure ; is with respect to its mean ;̄ and the
bias is the difference between that mean and the target concept `. The bias-
variance decomposition of MSE is particularly useful when thinking about
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measurement error because measurement variance is one way of representing
the concept of reliabilitymathematically.6 One can think of inverse validity 6 But note that this conflates the cross-

unit and within-unit variability of the
measurement strategy, the former of which
may sometimes be termed as a validity
problem rather than a reliability problem.
There are unit-specific biases which have
some variability across the set of units (and
which have mean zero) as well as variation
across repeated measurements of each
individual unit (which also have mean
zero). Unless you have repeated measures
of individual units, the unit-specific biases
will be indistinguishable from the repeated
measure variability.

(MSE) was being the sum of (squared) bias and reliability (variance). The final
one of the six terms in the table earlier, precision, is statistically defined as the
inverse of variance, so those terms already map directly on to each other.

Thus, with the statistical quantities of mean square error (MSE), bias, and
variance, we can quantify all six of the terms–validity, reliability; accuracy,
precision; bias, variance–that are widely used to describe the proximity of a
measure ; to a target quantity `. Validity and accuracy can be quantified by
mean square error with respect to the target, reliability and variance using the
variance of the measure with respect to its mean, precision with the inverse
of that, and bias with the expected value of the measure relative to the target.
While other statistical quantities are used in various contexts, in this text I will
largely stick to these quantities.

3.3.2 Nominal-Level Measures

For nominal level measures, measured values ;7 either match the target con-
cept `7 (which we define as the n`7 = 0 case) or they do not (the n`7 = 1 case).
Given this, the most obvious measure of overall validity is the proportion
correctly classified (%��):

%�� (;|`) = 1 − 1
<

<∑
7=1

n`7 (3.16)

(3.17)

As in the interval-level case described in the last section, this is necessarily
defined with respect to a given population of units. A measurement strategy
that has high validity on one set of units may not have high validity on other
sets of units.

Once again, where validity is a question of whether our measurement strat-
egy will return the right answer, reliability simply asks if our measurement
strategy will consistently return the same answer. To think about reliability, we
have to think about repeatedly trying to measure the same quantity using the
same measurement strategy. Imagine that we are able to apply the same mea-
surement strategy to each unit twice, yielding ;7 8 for 8 ∈ 1, 2,. Now, instead of
asking the proportion of ; correctly classified versus `, we are interested in the
proportion of ; consistently classified across the two measurements. Again,
the simplest and most obvious statistic is the proportion of cases in which
;71 = ;72. If 8 = 1 and 8 = 2 are different coders of the data, this is called inter-
coder reliability. If 8 = 1 and 8 = 2 are measurements at two different moments
in time, this is called test-retest reliability. In either instance, this is again defined
as an average across a set of measured units.

There are a variety of more complicated statistics for assessing inter-rater
reliability, such as Cohen’s kappa and Krippendorf’s alpha, which I do not

https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://en.wikipedia.org/wiki/Krippendorff%27s_alpha
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cover in detail here. These statistics are all based on the observation that the
basic agreement of two measures, whether by two coders or at two moments
in time, is quite sensitive to the number of categories of the nominal-level
variable and the relative frequencies of those categories. Thus, such statistics
attempt to adjust for this baseline level of agreement “by chance” in order
to make comparisons across different variables with different distributions
meaningful.

3.4 Information and Calibration

In addition to these properties of the unconditional distribution of n;, it is
sometimes important to consider the conditional relationships of n; to `. How
does n; vary across different levels of `? There are two important questions
about the quality of a measure that are related to this. First, are the measure-
ment errors systematically different at different levels of the target concept?
That is, how well well calibrated is ; as a measure of `? Second, how big are
the measurement errors relative to the variation in the target concept? That
is, how much information about the variation in ` is contained in ;? Once
again, these questions apply somewhat differently to interval-level (and ratio-
level) measures as opposed to nominal-level (or ordinal-level), so I will take the
different levels of measurement in turn.

3.4.1 Interval-Level Measures

Miscalibration of a measure occurs when a one unit change in ; is not asso-
ciated with a one unit change in `. Figure 3.3 illustrates what miscalibration
looks like. Panel a shows a case where the measure varies over a smaller range
that the underlying concept, and therefore the measurement error in panel b is
correlated with the target concept `. Note that the measurement error has an
average of about zero in this case, so this measure is not biased overall, but it is
biased conditional on most values of ` because for most values of ` the average
value of ; is higher or lower than `. Note that some pragmatically defined
measures do not have well defined numerical scales absent the measure itself,
and therefore it can make more sense to think of them as uncalibrated than
miscalibrated.

(a)

(b)

Figure 3.3: Panel (a) shows a set of measure-
ments ;7 (y-axis) that are miscalibrated with
respect to the underlying target quantity `7
(x-axis), Panel (b) shows the measurement
errors n; as a function of the target quantity
for the same measurements.

If we want to assess whether an interval-level measure is miscalibrated (and
we have some known values of ` for at least some units) is to run the simple
linear regression of ; on ` and test whether the coefficient V = 1. Are the data
consistent with the hypothesis that, in the broader population of applications
of this measurement strategy to units like those observed, a one unit change in
` is associated with a one unit change in ;? Note that this does not necessarily
mean the measure is unbiased or that it has low variance. It could be that ; is
on average greater or less than `, which shift U in the regression. It could also
be that the standard deviation of the regression residuals f is large or small,
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which would be associated with the variability of the measurement strategy.
The other question we often want to ask about the quality of a measure is

how much information is contained in the measure itself about the underlying
quantity that we wanted to measure. For interval-level quantities, this can
be captured in various ways, the simplest of which is the (hopefully familiar)
Pearson correlation coefficient:

d = 2=@(;, `) = 2=D(;, `)
A3(;)A3(`)

.
Higher correlations imply stronger relationships between ; and `.7 7 Note that it is possible to have a strong

correlation of ; and ` in cases where ; has a
significant bias with respect to `. To take an
extreme example, imagine that ;7 = `7 + 0
for some constant value 0 for all units 7.
This means that the measure is always “too
high” by 0, but the correlation between the
measures will be 1.

The correlation coefficient is closely related to the familiar '2 = d2 statistic
which describes the proportion of variation in ; explained by variation in
` (and vice versa). This proportion of explained variation is a particularly
useful quantity for thinking about the quality of a measure for understanding
variation in the underlying concept. For example, if d =

√
0.5 = 0.707,

then '2 = 0.5, which is to say that half the variation in the target concept is
explained/captured/predicted by the measure.

What qualifies as a good correlation @ and proportion of variance explained
'2 between the true value of ` and the measure ;? Chapters 4 and 5 further
develop some of the possible consequences of measurement error, but it is
difficult to give a generic answer to how much measurement error is ok (and
thus, how low d(;, `) can be). An alternative non-parametric correlation
statistic, Kendall’s tau statistic g is perhaps more useful than d for providing
intuition in this case. Kendall’s tau is (in this application) the proportion of
pairwise comparisons of ;7 with ;7′ for two units 7 and 7′ which are in the
same direction as the pairwise comparisons of the underlying `7 with `7′ .

µ

m

ρ = 0.5, τ = 0.33

µ

m

ρ = 0.75, τ = 0.54

µ

m

ρ = 0.9, τ = 0.72

µ

m

ρ = 0.99, τ = 0.91

Figure 3.4: In the context of measurement,
only numerically high correlations d between
the measure (y-axis) and the target concept
(x-axis) yield a high probability g that pairs of
units are correctly ordered.

Figure 3.4 shows a set of examples of d and g, given a multivariate normal
distribution of ; and `. This figure highlights that very substantial Pearson
correlation coefficients are required to achieve high proportions of correct
pairwise comparisons with the respect to the underlying concept of interest `.
Correctly ordering the units, being able to reliably determine which has more
or less of the target concept of interest, is of course only one application of a
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measure. However, along with '2, correct ordering is one of the few that can
be assessed without reference to any other variables. To say anything more
generally about what is a large and what is small amount of measurement
error, we need to think more about the kinds analyses that we might conduct
using variables measured with error, and the relationship of that error to the
other variables - that enter into those analyses.

Both the correlation coefficient and the linear regression coefficient are
useful tools for thinking about measurement error in interval-level measures.
Of course the relationship between ; and ` need not actually be linear. Some-
times measurement error has more complicated relationships with the value of
the target concept `, as we will see in the example in Chapter 5.5.

3.4.2 Nominal-Level Measures

For nominal-level measures, assessing the conditional relationships of n; to `
requires focusing on the particular possible values of `. This requires tools that
are appropriately adapted to the structure of errors that are possible when a
variable can only take on a limited set of values. With binary quantities ` ∈ 0, 1,
for either true value of ` there is one correct value of ; and one incorrect
value of ;. If `7 = 0, then ;7 = 1 is a false positive; if `7 = 1, then ;7 = 0 is
a false negative. Most of my focus here will be on the binary case, but the key
ideas can be generalised to nominal variables with more than two categories.

Despite the apparently simplicity of having only two possible kinds of
errors, there are a very large number of ways to describe errors in binary
variables. In many applications, the rate of errors when ` = 0 is very different
than the rate of errors when ` = 1, because one of these is far more common
than the other. One of these errors may be far more important than the other
substantively as well, eg we might be more worried about failing to detect a
disease than about falsely diagnosing one, or we might be more worried about
imprisoning the innocent than about failing to imprison the guilty.

Given that these kinds of asymmetries are quite common when we want to
measure binary quantities, there is a terminology for distinguishing the rate of
false positives separately from the rate of false negatives. First, we define the
types of errors and non-errors that are possible in a binary variable:

; = 0 ; = 1

` = 0 true negative false positive
` = 1 false negative true positive

The above 2x2 matrix of possibilities is often called the confusion matrix.
The accuracy of a binary measure is simply the proportion of cases in which
; = `:

https://en.wikipedia.org/wiki/Confusion_matrix
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>(true positive) + >(true negative)
>(true positive) + >(true negative) + >(false positive) + >(false negative)

The quantities sensitivity (Se) and specificity (Sp) are defined as follows:

• Sensitivity is the true positive rate, the proportion of the cases where ` = 1
for which ; = 1:

>(true positive)
>(true positive) + >(false negative)

• Specificity is the true negative rate, the proportion of the cases where ` = 0
for which ; = 0:

>(true negative)
>(true negative) + >(false positive)

The best possible value for both of these is 1. Note that you can always
achieve this for either sensitivity or specificity at the expense of the other, by
setting ; = 1 for all units (achieving perfect sensitivity) or ; = 0 for all
units (achieving perfect specificity). This obviously does not make for a good
measure though, as such a measure carries no information at all about `!

Both of these quantities condition on the true value `: they ask questions
about the proportion of correctly measured values ; among units with a given
true value `. There are further statistics that we can calculate which condition
on ; instead of `. The corresponding quantities are usually called positive
predictive value (PPV) and negative predictive value (NPV):

• Positive predictive value is the proportion of the cases where ; = 1 for
which ` = 1:

>(true positive)
>(true positive) + >(false positive)

• Negative predictive value is the proportion of the cases where ; = 0 for
which ` = 0:

>(true negative)
>(true negative) + >(false negative)

Whereas sensitivity and specificity describe the rate of (non-)errors among
units with a common true value, positive and negative predictive value describe
the rate of (non-)errors among units with a common measured value. Positive
predictive value asks “of the units I measured as ; = 1, how many of them
really have ` = 1?”, as opposed to sensitivity, which asks “of the units that really
have ` = 1, how many of them will I measure as ; = 1?” Both of these types
of questions are potentially relevant to thinking about a given measurement
problem, a point we will develop further in Chapter 4.

There are further statistics that aim to describe the overall information
content of a binary measure, which is to say the strength of the relationship
between the measure and the target. You can think of these as being somewhat
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analogous to the correlation coefficient in the interval level case we considered
in the previous section. One of the simpler ones to understand is the “Diagnos-
tic Odds Ratio”, which is defined as:

�$' =

>(true positive)
>(false positive)
>(false negative)
>(true negative)

This quantity can be understood as telling you how much more you should
believe ` = 1 after observing a measured value ; = 1 by comparison to
what you would have believed had you observed ; = 0. If the value of the
�$' = 1, there is no information content to the measure; if observing the
measure perfectly resolves (at least one of) whether ` = 0 or ` = 1, then the
�$' = ∞. If the DOR is less than 1, that indicates that the measure provides
a negative signal of `, where observing ; = 1makes it more likely that ` = 0
and observing ; = 0makes it more likely that ` = 1. This is obviously a very
bad property for a measure to have, it is equivalent to the continuous measure
case above where the correlation between ; and ` is negative. As in that case,
such situations are often easily fixed by redefining the measurement strategy in
a simple way that reverses its sign.

3.5 Assessing Validity

Which approaches to assessing validity are possible varies from application
to application. There is a bewildering menagerie of overlapping terminology
around the concept of validity with respect to measurement. These terms have
largely been developed in the field of psychology/psychometrics, which has
an especially rich tradition of developing new concepts and then trying to
measure them through survey-based batteries of questions. This then leads to a
number of overlapping approaches to assessing validity. I have made an effort
here to translate these each into the terminology and notation we are using
here.

• Concurrent validity: a measure ;1 correlates well with a previously vali-
dated measure ;2 for the same target concept `.

• Construct validity: an all-things-considered assessment of the adequacy of
; as a measure of the target concept `.

• Content validity: the extent to which a measure ; reflects “all aspects” of
the target concept `.

• Convergent validity: the extent to which ;1 measuring `1 is correlated
with ;2 measuring `2 in a case where we expect `1 and `2 to be highly
correlated.

• Criterion validity: the extent to which ; is correlated with some quantity
F (which may or may not be another measure of the target concept) that we
expect is correlated with `.
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• Discriminant validity: the extent to which ;1 measuring `1 is not corre-
lated with ;2 measuring `2 in a case where we expect `1 and `2 to not be
correlated.

• Face validity: the extent to which ; is subjectively perceived to be measur-
ing ` by an observer or by an expert.

• Predictive validity: a measure ; correlates well with some F (which is not
another measure of the target concept) that we expect is correlated with `.

If you read these carefully, you will note that some of these are more pre-
cisely defined and some correspond to specific approaches to assessing validity
while others are stated at the level of principles. These do not necessarily go
together though: face validity may appear to be the least precisely defined, but
in Chapter 9.2.5 we will see a strategy for using pairwise comparisons of units
to not merely validate, but actually construct an index measure. Subjective
perceptions may vary, but they are themselves measurable: you just need to
find someone (ideally a relevant expert) to make some evaluations of units with
respect to a concept of interest. Many of these terms overlap: criterion validity
includes concurrent, convergent and predictive validity. I will generally limit
my use of these terms, because I think they are easily confused and I would
rather just talk about ;s and `s and the structure of the errors n; between
them. All approaches to assessing validity are about trying to understand this
relationship.

From the perspective of the analyst, the best, non-trivial,8 cases for valida- 8 The trivial case is that you know ` for all
the units you want to measure, in which case
you have already solved the measurement
problem.

tion are those where you know the right answer ` exactly for a representative
subset of the units you ultimately want to measure. In practice, the benchmarks
for validation that are available are often far more limited than this. There are
two broad cases. First, there are cases where there is some benchmarking data
available, either ` itself for some units, or another measure ; for some units,
where those units are or are not representative of the units you ultimately wish
to measure. Second, there are cases where there is no benchmarking data avail-
able, at least not on the scale of the quantity ` that you are trying to measure.

3.5.1 With representative benchmark data

The best case for testing validity is that you know ` for a representative sam-
ple of units. In these cases, you can simply calculate the kinds of quantities
described in the preceding sections of this chapter, within your benchmark
sample, and have a reasonable expectation that these are representative of the
broader population to which you will apply the measurement strategy. In the
continuous cases you can calculate the RMSE of ; versus `, the correlation of
; with `, and the unconditional � [;] − � [`] and conditional biases � [;|`].
In binary/categorical cases, you can directly calculate true negative, false neg-
ative, true positive and false positive rates, as well as the quantities that derive
from them. These will all be sample estimates, whose precision depends on the
size of the benchmark sample, but they will in expectation give you an accu-
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rate picture of how the measurement strategy will perform across the entire
population.

Or rather these calculations will give you an unbiased assessment of the
measurement strategy if the benchmark data was not involved in any way in
selecting or optimising the measurement strategy. If, however, you have used
the benchmark data to choose between multiple measurement strategies, or
to calibrate, optimise or estimate aspects of the measurement strategy (see, eg,
Chapters 8 and 10), they you need to worry about over-fitting. That is, if you
chose the measurement strategy that you use on the basis of it having a low
measurement error versus alternatives (selection) in the benchmark data, or
you chose features of the measurement strategy itself to minimise measure-
ment error in the benchmark data (calibration/optimisation/estimation), then
the magnitude of measurement error in the benchmark data sample will gener-
ally be an underestimate of the measurement error in the population to which
you want to apply the measurement strategy.

The principle strategies for accounting for over-fitting in other applications
apply to measurement applications as well. If you want a realistic assessment
of your likely patterns and magnitudes of measurement error “out-of-sample”,
that is to say in the population as opposed to the sample for which you have
the benchmark data on `, you need to do any measurement strategy selection
and calibration/optimisation/estimation using subsets of the benchmark data
and then test its performance on the residual subset that was not used. There
are a number of strategies for doing this, by dividing the benchmark data into
a training set and a test set or by applying cross-validation. The mathemat-
ical details and practicalities of these are covered in detail in other sources,
the important thing to note here is where the need to apply these arises in
measurement applications.

The core question you need to ask is whether the benchmark data you are
using in any way informed the selection of a measurement strategy or was
used to optimise/calibrate/estimate aspects of the measurement strategy. If
it was, measurement error in the benchmark data ceases to be representative
of measurement error in the broader population of units, because you have
selected for a measurement strategy that makes the measurement errors in the
benchmark data small. The hope, of course, is that this will make measurement
errors in the broader population you wish to study small. But there is a risk
that it will simply be over-fitting the idiosyncrasies of the benchmark data,
particularly when the benchmark data set is small and/or the measurement
strategy has many degrees of freedom / parameters over which you have
optimised performance for that benchmark data.

3.5.2 With unrepresentative benchmark data

Additional considerations arise when you are attempting to assess validity with
benchmark data which is unrepresentative of the population to which you

https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
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want to apply a measurement strategy. Are the errors larger for certain kinds
of units than for others? What does this imply about the measurement errors
when applied to the population?

One way to assess the potential for non-homogeneous measurement error
is to model the error structure as a function of observable characteristics of
units among the benchmark data that you do have. Note that what exactly it
would make sense to do here will depend on the problem and the ultimate
application, so it is difficult to provide general advice. In most applications,
one would be primarily looking for evidence of a gross mismatch between
the errors in the kinds of units that are over-represented in the benchmark
set versus those that are under-represented. For example, you could have a
situation where the measurement error n; has a different mean value in the
over-represented types of units by comparison to the under-represented types
of units.

Of course, as with any exercise in re-weighting, you can only assess the
range of units where under-representation in the benchmark sample is finite.
If there are types of units which are entirely missing from your benchmark
data, and you lack credible evidence that the error patterns observed in the
benchmark data carry over to those types, for those unrepresented unit types
you are effectively in the situation discussed below where you lack benchmark
data at all.

3.5.3 With imperfect benchmark data

Another common case is that your benchmark data itself has some (unknown)
error with respect to the concept of interest. That is, you are attempting to
validate ; using ;∗ rather than using `. As should be obvious, how useful
;∗ is for validating ; depends on whether the measurement errors in the
benchmark n;∗ tend to be larger or smaller than the measurement errors n;
in the new measure you are trying to validate. You will generally not have
direct data on this question, but may have some reasonable expectations.
For benchmarking against ;∗ to be useful, you generally need the n;∗ to be
smaller than the n;, and also to not have problematic biases for your particular
problem (eg correlation with your other quantities of interest).

3.5.4 Without benchmark data

For many measurement projects, there simply is not an existing measure for
the concept of interest. Indeed, this is necessarily the case the first time some-
one tries to measure something new. Part of the reason why there has been the
proliferation of validity concepts listed above is that there are a number of pos-
sible ways one can begin to validate in the absence of benchmark data on the
target concept. “Criterion”, “concurrent”, “convergent” and “predictive” validity
are all variations on the idea that you might look at whether ; is correlated
with other variables that you expect to be correlated with `. “Face” validity is
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the idea that you might just look at some of the values produced by the mea-
surement strategy (in a more or less structured way) and decide if they make
sense. If you do not have benchmark data for `, you need to either look to
other variables you do have that you think might be a reasonable proxy, or you
need to trust your intuition as to what “looks right”. Since one does not know
what the right magnitudes of correlations with other variables are ex ante, even
the criterion/concurrent/convergent/predictive validation methods ultimately
come to the same “does it look right?” standard as face validation methods.

This all sounds very nebulous and unscientific. While it is certainly the for-
mer, science often begins with nebulous hunches rather than following some
strict procedure that guarantees sound results. There is no general method for
validating a new measure of a previously unmeasured concept.

Face validation can be given a formal structure that mitigates some of
these issues. For a continuous (interval or ratio-level) concept, you ran-
domly select pairs of units for which a new measure has been generated,
and present the units (and potentially relevant information about them) to a
subject area expert who is ideally not the person generating the measure it-
self.[ˆclassificationvalidation] For each pair of units, you ask the expert for the
relative ranking of the two units with respect to the concept of interest. The
sign of the difference between the measures for these units can then be com-
pared to this expert subjective assessment benchmark. If the measurement has
high validity for the concept of interest, the differences in the measures will
generally have the same sign as the expert’s subjective assessments. Of course
one cannot expect to achieve a perfect match here, and the structure of the task
may change the results radically. If you are measuring properties of countries,
you might assume the experts already know the units and provide no further
information: “does country X or country Y have a higher level of this concept?”
But if you are instead trying to measure properties of large numbers of indi-
viduals who the expert will not already know, you need to provide information
about the units, including at least the underlying indicator data that went into
the measurement strategy itself.9 9 For these latter cases, in Chapter @??floridi-

lauderdale), I describe a method for structur-
ing an exercise like this to generate a measure
from indicators using experts to calibrate the
contribution of the different indicators. This
switches the role of the experts from pro-
viding validation for a measure to providing
evidence that forms part of the construction
of the measure, even though the pairwise
comparison task can be structured in the
same way.

For a categorical (nominal or ordinal) concept, the experts can often pro-
vide direct codings of individual units. If these are randomly selected from the
population of interest, one can use the expert codings of a random subset to
calculate the various categorical variable validity statistics (true positives, etc)
described earlier in this chapter. As with the pairwise comparison approach
for continuous concepts, the limitation of this approach is how much mea-
surement error there is in the experts’ evaluations, which is itself not typically
known quantitatively. That is, the expert codings are just another ;∗, they are
not `. Experts will invariably disagree with one another and have different
conceptions of the concept `. Nonetheless, validating against a ;∗ is poten-
tially better than doing no validation at all, and since the concepts that social
scientists are interested in measuring are often invented by social scientists
themselves, validating against expert understanding of those concepts is at least
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a check for consistency.

3.6 Assessing Reliability

Recall that the reliability of a measurement is the extent to which repeating a
measurement procedure generates stable, as opposed to unstable, measured
values for a given unit. As noted earlier, some usages of the term “reliability”—
particularly those that compare measures across different measurement meth-
ods for the same quantity of interest or across measures constructed from
difference subsets of indicators in a multi-indicator measurement strategy—
are probably better understood as indirect tests of validity. Here, I will focus
on practical strategies for assessing stability across repeated applications of the
same procedure.

Perhaps obviously, there are two relevant cases to consider: those where
it is possible to repeat the measurement procedure and those where it is not
possible to repeat the measurement procedure. Measures that involve any sam-
pling procedures are unreliable in the sense that if you resampled, you would
get different measures for the quantities of interest. These include be area mea-
sures constructed from surveys of individuals, inflation measures constructed
from surveys of goods, and measures of a wide variety of social science con-
cepts constructed from expert coding of cases. In contrast, measures that are
constructed from fixed indicators like official national statistics can be perfectly
reliable in the sense that if you followed the procedure you would end up with
the same number exactly.

To assess reliability in cases where repeated measures can be constructed,
one can look at the same sorts of statistics that are used to assess validity, but
comparing ;1 and ;2 rather than ; and `. In cases where repeated measures
are not available, there is an important conceptual distinction to be drawn
between instances where the repeat measures are practically unavailable, but
would in fact be different from the observed measures if you applied the same
procedure again, versus instances where applying the same procedure would in
fact generate the same numerical values because all the inputs are fixed.

Perfect reliability isn’t necessarily a good thing, unless it comes with high
levels of validity in the sense of proximity to the target concept `. Holding
constant the overall level of validity of a single measure (eg RMSE of ; versus
`), it is better if the source of the lack of validity is a lack of reliability, as you
then have the prospect of generating more valid measure simply by collect-
ing more data (eg some sort of larger sample). If you literally have multiple
measures, each constructed in the same way, pooling multiple realisations
of an unrealiable measurement strategy will typically be an improvement on
single realisations of the measurement strategy. For continuous measures,
this pooling typically involves taking the mean; for categorical measures this
may involve taking the modal categorisation.10 Often there is a feasibility or 10 See Chapter 10 for a more extensive dis-

cussion of using point classifications versus
probabilistic classifications in subsequent
analyses.

expense constraint on pooling evidence from repeated measurements into a
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better synthetic measure, but where a measurement strategy generates different
values on repetition, the long run average of these is nearly guaranteed to have
better properties than a single realisation, and so the closer you can get to that
long run average, the better.

A lack of reliability is a lesser problem by comparison to a lack of validity.
Or rather, the thing you care about is the relationship between ; and `, which
is to say n7, and how it covaries with the true values of ` and the other quanti-
ties relevant to your application. Whether you could obtain different values of
; for the same units may be relevant (or even useful) in particular problems,
but this is only important for subsequent analyses using ; if you are in fact
going to conduct multiple measurements. If you have a single measurement
that you are going to use in an analysis, all that matters is the validity of that
measure, which is to say the properties of the n7 in the measures you actually
have.

3.7 When is a Measure Not Good Enough to Use?

“For we dare not make ourselves of the number, or compare ourselves with some
that commend themselves: but they measuring themselves by themselves, and
comparing themselves among themselves, are not wise.” 2 Corinthians 10:12, King
James Bible

“The data may not contain the answer. The combination of some data and an
aching desire for an answer does not ensure that a reasonable answer can be
extracted from a given body of data.” (Tukey, 1986, p74-5)

One sometimes hears the suggestion that there are some things that we
should not try to measure, or more specifically that there are some things we
should not try to quantify, because we cannot do so well enough. This is often
a difficult claim to produce evidence for or against. Sometimes it is based on
concerns about unintended consequences of the use of the measure, as dis-
cussed in Chapter 1. However sometimes it is simply a statement that we will
generate misleading claims about reality if we do so. There are clearly some
measures that should not be used for some purposes. We can trivially gener-
ate examples, such as using the average income of a local area as a measure
of the average education level of that area or quality of life for those who live
there. Income is probably correlated with these things, but the measurement
errors are very likely to have associations that lead us to errant conclusions
about the target concepts (education levels, quality of life). This might seem
obvious in this instance, but many a research project has used measures that
would probably have worse properties for measuring the concepts they pur-
ported to measure than the above examples. The question is how you identify
when there is a problem in applying a given measurement strategy to a given
prospective problem.

One way to come at this problem of when measures are not good enough
to use, is to ask what are the ways that measures might fall short of support-
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ing different applications. I have identified three general ways that we might
overclaim regarding the quality of measurements, all of which we should aim
to avoid:

1. We should not overclaim regarding levels of measurement. We should not
present measures that are ordinal (providing information about ranking) as
though they provide interval- or ratio-level information about magnitudes
of difference.

2. We should not overclaim regarding the validity of measures. We should
present information about the known magnitude and patterns of mea-
surement error wherever available, and where this information cannot be
constructed we should clearly describe the potential risks of using measures
with patterns of error that we cannot quantify.

3. We should not overclaim the domain over which our measures are useful.
When describing measures we should describe them in terms close to the
measure we constructed rather than the most general concept that we could
plausibly associate our measure with.

These each correspond to an essential concept that we have considered:
level of measurement of ;, the validity of ; as a measure of `, and the defini-
tion of the concept ` for a given measure ;. You need to make sure that the
actual level of measurement you have supports the kind of claim you want to
make; you need to make sure the actual measurement you has a relationship
with the target concept that is sufficiently good to support the kind of claims
you want to make; you need to make sure that the language you use to de-
scribe the target concept does not inflate the distance of that concept from the
measure you actually have.

In the next two chapters, we will explore ways that measurement error
can create problems in applications. These problems arise from working with
measures that do not have perfect validity, where ; ≠ `. These are roughly
divided into what we might call “normative” problems in Chapter 4 and what
we might call “empirical” problems in Chapter 5.





4
Fairness in Measurement

If a concept is measured with error, some units will usually be measured better
than others. Usually some will have larger errors and others smaller errors;
usually some will have positive errors and others negative errors. Were we
measuring the diameters of ball bearings we would not worry about whether
we were being fair to the ball bearings for which the measurement error was
negative versus the ball bearings for which the measurement error was posi-
tive. However, given that we are engaged in social measurement, and the units
we are measuring are people, groups, countries, etc, we do have to think about
fairness in how they are being treated by any given measurement procedure.

The question of how measurement error n; = ; − ` relates to other vari-
ables - is particularly acute where those other variables specify membership
in legally protected groups or in otherwise sensitive groups of units. There
are a very large number of fairness criteria that scholars have applied in vari-
ous contexts, most of which are statistically equivalent, tabulated by Barocas
et al. (2020).1 It is intuitive that if measurement error in an individual-level 1 Chapter 2 of Barocas et al. (2020) provides

a more detailed mathematical treatment of
the issues covered in this section. See also
Kleinberg et al. (2016).

measure is correlated with some - like race, ethnicity, sex or gender, the use
of that measure might lead to biased decisions with respect to individuals of
different races, ethnicities, sexes or genders. It turns out that the challenges are
more fundamental than this: the very existence of any measurement error at
all creates basic challenges for the fair treatment of units, if we are to use their
measured values for any purpose.

4.1 Separation and Sufficiency

When we look at a measure ;, and we see differences as a function of some
other variables - , we do not know if those differences are due to “real” dif-
ferences in ` between those groups or different measurement errors for
those groups. For this reason, looking at group differences in the distribution
> (;|-) of measures ; cannot tell us much about whether the measurements
treat different groups - fairly. If we see that one group has higher values of a
measure than another, it could reflect a fairness problem with the measure-
ment (a difference in the distribution of n; for different groups) but it could
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also reflect a fairness problem with reality (a difference in the distribution of `
for different groups). In order to meaningfully define what fairness means with
respect to measurement, we need to simultaneously think about the measure ;,
the underlying concept that we aimed to measure `, and the groupings - with
respect to which we have potential concerns about fairness.

Ideally we would like any measurement to be independent of - , conditional
on the true value of the concept of interest `:

> (;|`, -) = > (;|`)

In the machine learning literature, this conditional independence condition
is called “separation”. This criterion says that, among units with the same true
value of the target concept `, we want the distribution of the measurement
; (and thus the measurement error n;) to be identical for all levels of - . So,
for example, among students with the same understanding of the material in
a course, we want their distribution of final marks (the measurement gener-
ated by the assessment procedure) to not depend on whether they are men or
women, or black or white, or a variety of other attributes - for which we are
concerned about bias.2 2 We are likely to be particularly con-

cerned with the mean of the distribution
(� [; |`, - ] = � [; |`]). For example, if we
are constructing an educational assessment,
we do not want a situation where men tend
to get higher average marks ; than women
who have the same underlying understanding
of the material `, or vice versa.

There is another condition that we might want to satisfy, called “sufficiency”.
Sufficiency is (like separation) a conditional independence condition, but
conditioning on the measure rather than the target concept. Sufficiency is
met when the distribution of the true value of the concept of interest ` is
independent of - , conditional on the measured value ;:

> (`|;, -) = > (`|;)

Why is sufficiency a criterion that we would like a measure to satisfy? The idea
is that, if we are going to use a measure ; for some application or decision,
we would like it to be the case that the distribution of the true values of the
underlying concept that we wanted to measure are the same for individuals
in different groups who have the same value of the measure. We would like it
to be sufficient to know the measure ;. Knowing - should convey no further
information about the likely value of ` for a given unit once you know ;. So,
for example, if we are going to award First class degrees to all students who
achieve an average of 70 across their modules, sufficiency says that the men and
women who get a 70 (;) should have the same distribution of understanding of
the course material (`).

Thus, separation says that units (individuals) with the same value of the
thing you wanted to measure have the same distribution of measures, while
sufficiency says that units with the same value of the measures have the same
distribution of the thing that you wanted to measure. These both seem like
properties that we would want to satisfy, in order that a measurement strategy
for generating ; is fair to units in different groups - .

The bad news is that separation and sufficiency are in fundamental conflict.
Separation and sufficiency can only both be satisfied if both the measure ; and

https://en.wikipedia.org/wiki/Conditional_independence
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the concept of interest ` are independent of group - . Stated differently, if there
is any difference in the distribution of the the true values ` of the concept that
you wanted to measure between the groups defined by - and there is any mea-
surement error in ;, you cannot achieve both separation and sufficiency. The
proof of this is beyond our scope here, but it is a straightforward implication of
the laws of probability and the definitions of separation and sufficiency given
above (Barocas et al., 2020).3 3 The brief sketch of the proof fits in a

footnote. If > (` |;, -) = > (` |;) and
> (; |`, -) = > (; |`) then it is implied
that > (;, ` |-) = > (;, `) . That is, if both
sufficiency and separation are satisfied, then
the joint distribution of ; and ` must not
depend on - . Therefore, if the distribution
of ; and/or ` does depend on - , at least
one of sufficiency or separation must not be
satisfied.

Given that this tension exists, any application must consider the question:
if you can only satisfy one, do you want a measure that satisfies separation or
one that satisfies sufficiency? Do you want measures to have the same distri-
bution given equality of the underlying quantity of interest or do you want
the same distribution of the underlying quantity of interest given measured
equality? Does it matter who you are or what the circumstances are? In order
to properly consider these questions, it is helpful to turn to some examples.

4.2 Application - Predicting Recidivism

In 2016, there was a public controversy over a risk assessment tool used in the
US to predict the risk that defendants being sentenced for criminal convictions
would commit further crimes in the future. This tool for assessing “recidivism
risk” is called “Correctional Offender Management Profiling for Alternative
Sanctions” but is generally referred to as COMPAS. The COMPAS score, on a
1-10 scale, is based on age, sex and criminal history, but not race/ethnicity.

ProPublica, a nonprofit organisation which conducts investigative journal-
ism “in the public interest”, published a long article arguing that COMPAS was
biased against black defendants because black defendants who ultimately did
not reoffend (` = 0) had substantially higher risk scores on average than did
white defendants who ultimately did not re-offend. Northpointe, the company
that developed the software, argued in response that COMPAS was not biased
against black defendants because, given the same risk score ; by the software,
black and white defendants were equally likely to re-offend. This is precisely
the tension of fairness in measurement that was discussed earlier in this Chap-
ter. ProPublica observed that COMPAS failed the separation test: given the
true target concept ` (whether someone would ultimately re-offend), black and
white defendants (- ) had different distributions of the measure ;. In response,
Northpointe argued that COMPAS passed the sufficiency test: given the risk
assessment measure ;, black and white defendants had the same distribution
of re-offending.

There was a particularly accessible exposition of the fundamental tension
between these notions of fairness published by Corbett-Davies, Pierson, Feller
and Goel in the Washington Post which my discussion below follows closely.
The ProPublica article was based on a public records request in Broward
County, Florida, and the data we will be analysing includes race, COMPAS
scores and whether the defendant committed another offense within the fol-

https://www.propublica.org/
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://www.northpointeinc.com/
https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas/
https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas/
https://www.washingtonpost.com/news/monkey-cage/wp/2016/10/17/can-an-algorithm-be-racist-our-analysis-is-more-cautious-than-propublicas/
https://github.com/propublica/compas-analysis/
https://github.com/propublica/compas-analysis/
https://github.com/propublica/compas-analysis/
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lowing two years for 3175 black and 2103 white defendants.
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Figure 4.1: Recidivism by COMPAS Score
(left), distribution of COMPAS Score among
non-re-offenders (center), distribution of
COMPAS Score among re-offenders (right).

We can see the relevant patterns in the data very easily. Figure 4.1 shows the
arguments on both sides. The left panel shows that the two-year recidivism
rate for black and white defendants is essentially the same, for each COMPAS
score. There are a few minor deviations, but they are small and are mostly of
the magnitude we would expect to see by chance given the number of observed
defendants. We also can see from this plot that the COMPAS score is highly
predictive of recidivism within two years: the recidivism rate rises roughly
linearly from 22% at a COMPAS score of 1 to 81% at a COMPAS score of 10.
This is Northpointe’s case for the COMPAS score: a given score “means the
same thing” for white and black defendants in terms of their future recidivism
and it is highly predictive of their future recidivism.

ProPublica’s case against the COMPAS score is in the center and right plots
of Figure 4.1. If we look at just the defendants who did not re-offend, black
defendants had higher COMPAS scores (center). The average COMPAS score
among black non-re-offenders is 4.22 while among white non-re-offenders it
is 2.94. It is also the case that among those who did re-offend, black defendants
had higher COMPAS scores (right). The average COMPAS score among black
re-offenders is 6.24 while among white re-offenders it is 4.72. It is indeed strik-
ing that the average COMPAS score for black non-re-offenders is closer to the
average for white re-offenders than it is to that for white non-re-offenders. The
average black non-reoffender is treated with greater suspicion of re-offending
by the system than the average white non-reoffender.

These results are internally consistent because the rate of recidivism is sub-
stantially higher among the black defendants in these data. Black defendants
had an overall recidivism rate of 0.52, versus 0.39 for white defendants. The
average COMPAS scores for black defendants were higher as well 5.28, versus
3.64 The combination of the fact that the recidivism rate is different for the two
groups with the fact that the COMPAS scores satisfy the sufficiency require-
ment of having equal recidivism rates given the COMPAS score guarantees

https://github.com/propublica/compas-analysis/
https://github.com/propublica/compas-analysis/


pragmatic social measurement 73

that the distribution of the scores must be different for black versus white
non-offenders and/or for black versus white offenders.

When we think about fairness, we have to ask “fairness with respect to
whom?” Fairness is a statement about equal treatment. People have a claim
to be treated equally with those who are similarly situated with respect to
relevant criteria (eg past and future criminal behaviour), in a way that does
not depend on protected criteria (race, gender, etc). The risk score is meant
to encode the information from the relevant criteria, at least the ones that
are known at the time. If we are thinking about someone who is black, do we
want to be fair by treating them the same as a white person with the same risk
score or as a white person with the same ultimate recidivism? To what extent
does the fact that the risk score is known at the point of decision, while the
recidivism is not, push us towards one answer? To what extent does the fact
that the recidivism is a real thing that the person will or will not do, while the
score is a mere prediction, push us towards the other answer?

Corbett-Davies, Pierson, Feller and Goel write:

It’s hard to call a rule equitable if it does not meet Northpointe’s notion of fair-
ness. A risk score of seven for black defendants should mean the same thing as
a score of seven for white defendants. Imagine if that were not so, and we sys-
tematically assigned whites higher risk scores than equally risky black defendants
with the goal of mitigating ProPublica’s criticism. We would consider that a
violation of the fundamental tenet of equal treatment.

But we should not disregard ProPublica’s findings as an unfortunate but in-
evitable outcome. To the contrary, since classification errors here disproportion-
ately affect black defendants, we have an obligation to explore alternative poli-
cies. For example, rather than using risk scores to determine which defendants
must pay money bail, jurisdictions might consider ending bail requirements al-
together — shifting to, say, electronic monitoring so that no one is unnecessarily
jailed.

Lurking in the background of this case are several other normative consid-
erations that make it difficult to focus solely on the measurement fairness ques-
tion. One could take the view that predictions about future re-offending should
have no role in sentencing, although they might be put to other uses.4 One 4 In a system more interested in rehabili-

tation, such scores might be used to target
support to those more likely to otherwise
re-offend, which would put these disparities
in a different light.

could take the view that because of systematic racism in US criminal justice,
blacks are more likely to be charged with crimes in the future by comparison
to whites with similar criminal behaviours, and so satisfying the sufficiency
test is actually just reinforcing the systematic biases elsewhere in the system.
While this is an unusually clear illustration of the tension between two notions
of fairness when treated narrowly, there are clearly many issues of fairness
and justice in its vicinity that might shape how we make the choice between
different notions of fairness. Of course this is not unique to this particular ex-
ample: fairness concerns regarding social measurement are particularly likely
to arise in the context of broader questions of fairness and justice with respect
to different groups.
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4.3 Application - Predicted A-Level Grades

In England, Wales and Northern Ireland, the primary qualification for univer-
sity entry are A Level exams. Students typically prepare for these subject-based
exams over a two year period, with most students sitting the exams in May -
June, receiving results in August, and entering university around the beginning
of October. Because of this tight timing, university admissions has histori-
cally relied on predicted grades for each student, given by their teachers based
on the coursework they have done in preparing for their exams. Universities
then make conditional offers to students based on these predictions and other
application materials. These offers are subject to the student achieving a set
of A-level grades. These A level grade conditions are typically slightly lower
than the predictions, for reasons that will become clear below. If the student
achieves that grade level, they are admitted; if they do not, are sometimes still
able to attend that university, sometimes have an offer from another univer-
sity for which they have met the conditions, or may use the “Clearing” process
in August to secure an available place at another university with lower entry
requirements.

The pass grades for A Levels are A*, A, B, C, D and E. A typical student com-
pletes three A Level exams, and most university entry requirements are based
on three A level results. For our purposes here, and roughly approximating
how the exam scores are used, we will conduct our analysis in terms of A level
grade points, which are calculated A* = 6, A = 5, B = 4, C = 3, D = 2, E = 1, non-
passing grades = 0 and adding over the three exams to yield a total number of
points between 0 and 18.

One way to think about the predicted grades set by school teachers for each
student is that they are a measure of the student’s ultimate achieved grades on
their A level exams. Teachers are not able to perfectly predict A-level exam
grades for their students, so these measures have measurement error. Analysis
by Murphy and Wyness (2020) shows that there are several important system-
atic differences between the A level grade points the students achieve and the
predictions that their teachers set. In the years 2013-15, 16% of students achieved
exactly their predicted grade points, 9% achieved more than their prediction,
and 75% under-achieved their predictions. On average, predictions are 1.7 grade
points higher than the results that students achieve (Murphy and Wyness,
2020).

Our question here is whether these under-predictions and over-predictions
are systematically associated with other attributes of students. If teachers
are, on average, too optimistic about student performance that is not a fair-
ness problem, even though it is a bias in the predicted grades as a measure
of achieved grades.5 A constant bias that applies to everyone is not a fairness 5 In a world where most teachers make

predictions that are too high, there is little
incentive for a teacher to recalibrate their
predicted grades to be more realistic as it
will only disadvantage their students in
admissions.

problem. What could be a fairness problem though, is if teachers are over-
predicting grades for some kinds of students more than for other kinds of
students. Concerns about these kinds of biases are part of an ongoing discus-
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sion in the UK about whether predicted grades should be used in admissions,
whether some schools have policies of intentionally overstating their predic-
tions, and whether already advantaged students are able to haggle with their
teachers for better predictions.

In 2020, the coronavirus pandemic led to the cancellation of all A level ex-
ams. The UK government initially decided that the exams regulators6 should 6 This process happened in parallel, with

four different exams regulators, in England,
Scotland, Wales and Northern Ireland, with
slightly different details.

award “exam” grades based on teacher rankings of their students, mapped onto
to the past performance distribution at that school. Because of the persistent
discrepancy between predicted grades and achieved grades, this meant that a
very large proportion of students received grades that were lower than the pre-
dictions they had received for purposes of university admissions. This meant
that they failed to meet the conditions of their offers and lost their places at
their preferred universities. This is what happens in a normal year, and to
a similar number of students, but in 2020 the students had not actually had
exams, and so they had no agency in their “failure”. This algorithm (the 2020
measurement procedure) clearly lacked the public legitimacy that the exams
(the pre-2020 measurement procedure) had for assessing student achievement
and preparation for university. The political fury was such that the government
reversed course four days later and instructed the exams regulator to give all
students the better of these simulated grades and their predicted grades. This
meant that many more students met their conditional offers than in a normal
year, and some programmes ended up with far more first year students than
expected.7 7 My department at UCL ended up with

about an extra 100 first year undergraduate
students versus what we would have under
either the original algorithm or a typical
year’s pattern of performance.

Our focus here will be on the predicted grades and how they relate to
achieved grades in a typical year, as this is both interesting in itself and also
structured why the 2020 exam debacle took the form that it did. Some groups
of students received greater downgrades between their predicted grades and
the grades awarded by the algorithm because those groups had tended to re-
ceive overstated predictions to a greater extent in previous years. While the
algorithm did not explicitly use factors like race/ethnicity or school type in its
calculations, the fact that it was conducted at the school level meant that typical
patterns of overstatement with respect to these factors were apparent in which
students tended to receive downgrades versus their predictions.

Previous academic research has raised measurement fairness concerns with
predicted grades of the type that we have discussed earlier in this chapter.
Murphy and Wyness (2020) write:

“In addition to final achievement, we find that the Socio-Economic Status (SES)
of the student and the type of school attended are associated with accuracy. We
find among students who are equally high achieving, low SES students receive
predictions that are lower than those from high SES backgrounds, by around
0.059 grade points (where 1 point is equivalent to a full A-level at the lowest
grade). Moreover, high achieving students from state schools also receive lower
predictions than those from private schools.”

We know, from the theoretical discussion earlier in this chapter, that this

https://www.theguardian.com/commentisfree/2019/aug/18/predicted-grades-lottery-work-against-poorest-students-get-rid-of-them
https://www.theguardian.com/education/2020/jun/24/top-public-school-asks-teachers-to-exaggerate-exam-predictions
https://www.theguardian.com/education/2020/jun/24/top-public-school-asks-teachers-to-exaggerate-exam-predictions
https://www.theguardian.com/education/2020/jul/10/mps-warn-bias-predicted-results-pupils-england
https://www.theguardian.com/education/2020/jul/10/mps-warn-bias-predicted-results-pupils-england


76 benjamin e lauderdale

statement is describing failures of separation. It is a fairness claim that in-
volves comparing students with the same achievement, which is to say the same
value of the target `. The claim is that, among those with the same level of
achievement, those with low SES backgrounds and those from state schools
had lower predicted grades than students with high SES backgrounds from
private schools. But we also know, from earlier in this chapter, that there is a
potential tension with sufficiency. If you compare students with with the same
predicted grades from different backgrounds and schools, does one group tend
to outperform the other in their exams?

In order to assess this question, we examine data on predicted grades,
achieved grades, sex, ethnicity, local average educational attainment in the
area that a student lives (which Murphy and Wyness refer to as SES), and
school type. The data that I use here are from the Universities and Colleges
Admissions Service (UCAS) and include all students in the UK who took A
levels and applied to university in the 2017-2019 admissions cycles.8 8 These data are available for purchase from

UCAS with strong anonymity controls and
under a restrictive publication license. The
terms of the license restrict publication to
“100 data points”, which include numerical
quantities such as averages and regression
coefficients calculated from the data. Since
the analysis below uses non-parametric
regression, the equivalent quantity is the
number of degrees of freedom (calculated as
the trace of the projection matrix �), which
may not have an integer value. The total
number of effective data points revealed in in
this section is 95.3.

Figure 4.2 shows both how achieved grades vary by predicted grades for
relevant groups (the quantity relevant to evaluating sufficiency) and how pre-
dicted grades vary by achieved grades (the quantity relevant to evaluating
separation). The fitted curves are from LOESS non-parametric regressions in
order to illustrate the non-linearities in the relationships between predicted
and achieved grades. In the top row, we see the best case for fairness. Men and
women have the same average predicted points, the same average achieved
points, and essentially identical relationships between achieved and predicted
points. This is the best case because both sufficiency and separation are only
possible when the underlying distributions of the target ` are the same.

The remaining pairs of panels illustrate different manifestations of the
tensions between the two notions of fairness. The second and third rows show
the conditional relationships between predicted and achieved grades for the
two variables highlighted by Murphy and Wyness (2020): school type and
local area educational attainment. The right plots in these rows show that the
discrepancies quoted above based on data from 2013-15 remained in the data
for 2017-19. Among students with the same level of achievement, independent
school students and those from the highest quintile of local area education
attainment both had higher predicted points than those from state schools
and those from the lowest quintile of local area education attainment. This
seems unfair because predicted grades determine which students get university
offers at which universities. State school students and those from areas with
low local area educational attainment are broadly understood to be already
disadvantaged compared to students going to independent (which is to say
private) schools and those living in areas with high educational attainment.
These disadvantaged groups are both predicted to score lower on average
on the exams and do in fact score lower on average on the exams, but this
failure of separationmeans that those from the disadvantaged groups had
the further apparent disadvantage of having had worse predictions fed into

https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)#In_non-standard_regression
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)#In_non-standard_regression
https://en.wikipedia.org/wiki/Local_regression
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Figure 4.2: Achieved A level grade points
given predicted A level grade points (left
column) and predicted A level grade points
given achieved A level grade points (right
column), by sex, school type, race/ethnicity
and local educational attainment. The mean
values of the relevant groups are shown for
predicted (left column) and achieved (right
column) A level grade points as a vertical line
on each plot.
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their university admissions applications even where they ultimately had equal
achievement on the exams.

I say apparent disadvantage because the corresponding plots in the left
column seem to tell a different story. Here, we observe that students from the
disadvantaged groups (state school and low local area education attainment)
achieve lower A level grade points than those from the advantaged groups
(independent school and high local area education attainment) given the same
predicted A level grade points. Thus, a university admissions committee could
expect the students from the advantaged backgrounds to be more likely to
make their predicted grades than those from the disadvantaged backgrounds.
Whereas the previous analysis seemed to suggest that that the disadvantaged
students were getting further disadvantaged by the measurement error in pre-
dicted grades, this sufficiency analysis seems to suggest that the measurement
error works in their favour.

The counter-intuitive part of the preceding discussion is that it can all be
true at the same time. In these instances, there are failures of both separation
and sufficiency, but they seem to point in opposite directions as to which group
the measurement error is “helping” and which group the measurement error
is “hurting”. This is possible because of the large gaps in average A level grade
points between the groups in question (marked with vertical lines in the plots),
which creates more tension between the two notions of fairness.

The final row of Figure 4.2 shows the same relationships by race/ethnicity,
categorised using the top-level UK census categories of White, Black and Asian.
Predicted grades and achieved grades are somewhat higher for White and
Asian students relative to Black students, but the differences are not quite as
large as the differences by school type and local area educational attainment.
Here we see a clear failure of sufficiency (left plot) with white students achiev-
ing higher A level grade points than both Black and Asian students at the same
level of predicted grades. At the same time, the data come very close to satis-
fying separation (right plot), with students of all three groups holding nearly
identical predicted grades at levels of achievement other than the very low end
of the range.

So, once again, how we ought to evaluate these patterns depends on which
standard of fairness we want to adopt. There are arguments in favour of both
possibilities. The argument in favour of focusing our attention on sufficiency
(and thus the plots of the left) is that predictions determine admissions, and
we want to be in a world where knowing someone’s school type or local area
or race/ethnicity does not tell you anything about whether they are likely to
overperform or underperform their predicted grades. If sufficiency fails as
we see it does, university admissions have reason to “adjust” the predicted
grades for some groups relative to others, which we might find troubling. The
argument in favour of focusing our attention on separation is that the whole
system is based on the idea that the achieved exam scores are the canonical
truth, the predictions are just predictions. Thus it seems compelling that we
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ought to want to treat students with the same ultimate achievement fairly in
the admissions processes, and thus it is important that those students with
the same ultimate achievement receive the same predicted grades on average
regardless of their school type or local area or race/ethnicity.

There is a final subtlety here that makes reasoning about this case even
more difficult. As just noted in the last paragraph, we have been discussing the
predicted grades as a noisy measure of the achieved grades, and the latter as the
canonical, gold-standard truth that the predications are meant to recover. But
exams themselves are not wholly reliable measures of students’ understanding
of the body of material that the exams are meant to be assessing. Anyone who
has ever sat an exam will know that sometimes the questions are the ones
you are better prepared for and sometimes they are the ones you are less well
prepared for, sometimes you get a good night’s sleep and sometimes you do
not, sometimes you are not feeling well and sometimes you are. All of these
contribute to measurement error in the achieved grades, with respect to the
underlying concept that the exams exist to measure: students’ understanding of
a body of material.

Once we consider the possibility that achieved grades are themselves only
a noisy measure of the thing that we really wish university admissions could
be based on, this is a further complication in thinking about what fairness
actually requires in this situation. What if students’ exam performance has low
reliability / high variance in the sense that it would vary a lot from one sitting
to the next? What if students’ predicted grades, based as they are on a teacher’s
experience of the student over a longer period of time, are high reliability / low
variance? If this is the case, then it is entirely possible that the predicted grades
are actually a more reliable indicator of how a student would do on average
across many sittings of the A level exams than is that same student’s results
on a single sitting of the exam. To my knowledge there is no good data on
the “test-retest” reliability of A level exams, and so this is merely a speculative
possibility to further contemplate how we think about fairness in this context.

4.4 Conclusion

The preceding discussion fails to take a view on whether sufficiency or sepa-
ration is the appropriate criterion for evaluating measurement fairness in the
examples we have considered. There may be a clear argument in one case or
the other, but I have not been convinced one way or the other.9 Of course a 9 Perhaps in a future edition of this book I

will take a view!further possibility is that a compromise is appropriate, and one ought to aim
to keep violations of both criteria small. Regardless of where you come down
on this, I hope that you take away from this chapter an appreciation for the
difficulty of defining fairness in measurement and some of the tensions that
exist.

In the next chapter, we will start to unpack how measures are constructed.
We will continue to focus on the problem of measurement error, but thinking
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more about its consequences for subsequent data analysis using the measures
as opposed to the consequences for specific units being measured.



5
Consequences of Mismeasurement

In the last two chapter, we introduced the definition of measurement error,
discussed basic properties of measurements like reliability and validity, and
considered the challenges in assessing questions of fairness in measurement
in the presence of measurement error. That latter discussion was about the
consequences of measurement errors for the measured units themselves,
and thus also for society. In this chapter, we consider the consequences of
measurement errors for social science. What happens when the measures that
we are using for social scientific analyses are measured with error? What are
the potential problems that can arise, when will they arise, and will we be able
to easily assess whether we have these problems?

Measurement error can potentially lead to mistaken conclusions in subse-
quent analyses that employ the measures. By mistaken conclusions, I specifi-
cally mean mistaken claims about relationships involving the concepts ` that
those measures ; claim to represent. These mistaken claims arise because sub-
sequent analyses cannot distinguish between the component of the measure
; that reflects the concept of interest ` and the component of the measure
that does not (the measurement error n;). There are three basic cases that are
important to consider, corresponding to the three most important ways that a
(potentially mis)measured variable might enter a subsequent analysis.

1. Our mismeasured variable might be the outcome variable of our analysis.
2. The mismeasured variable might be the primary explanatory or treatment

variable.
3. The mismeasured variable might be a control or conditioning variable,

that we are using to ensure that we are making fair comparisons units with
different values of the primary explanatory or treatment variable.

We consider each of these cases in turn.

5.1 Error in the Outcome Variable

Figure 5.1 illustrates the case where the mismeasured variable ` is the outcome
variable, and we want to estimate the causal effect of some treatment variable
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) on `. Here, we assume that our measurement ; has the sort of generative
relationship to ` that is assumed by the representative perspective on measure-
ment, an assumption that we will relax below. If in fact we can only estimate
the causal effect of ) on ;, what might go wrong? mI2

I1

I3

µ

O

T

Figure 5.1: Measurement error in outcome
`, with representative measurement ; for
`. Causal relationships between treatment
variable ) , and target concept `, indicators � ,
measure ; and other factors$.

If ) has a causal effect on `, we can see that this will in turn have an indirect
effect on the indicators �1, �2, etc that will in turn cause the value of the mea-
sure to change. So, if there is a causal effect of ) on `, there will also be a causal
effect of ) on ;. This is the good news.

The bad news is that this is not all that might happen, there is also the
potential that the treatment will have an effect on any of the other quantities
$ that influence the indicators �1, �2, etc and therefore the measure ;. Thus,
a treatment ) might have an effect on$ that generates an effect on ;, without
having any effect on `. Given that ` is the thing that ; ostensibly measures,
this is bad, and could lead to misattribution of the causal effect. There might
be no causal effect of ) on `, but we might think there is because we observe
a causal effect of ) on ;, which is supposed to measure `. The causal effect of
the treatment is on the measurement error n" , rather than on the quantity we
wished to measure `.

Can we tell the difference between these two scenarios? Unfortunately,
the answer is generally no. In some cases we may be able to do so if we have
additional information about the other factors$ or the measurement errors
n" that result from them. But this is not usually the case because if we had such
information we would typically just use it to improve our measure to eliminate
those errors.

mI2
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µT

?

?

?

Figure 5.2: Measurement error in outcome `,
with pragmatic measurement ; for `. Causal
relationships between treatment variable
) , and target concept `, indicators � , and
measure ;.

What if our measurement is not generative, as is assumed by the repre-
sentative measurement perspective, but rather summary, as is allowed by the
pragmatic measurement perspective? Remember, the implication of this is that
there is no necessary causal relationship from the concept we aim to measure
` to the indicators � and the measure ;. Figure 5.2 shows that this generates
an additional problem beyond the ones described above (which still apply, but
are omitted from the figure for clarity). The additional problem is that there is
now no guarantee that a treatment effect of ) on ` will actually be conveyed
through to make an observable effect on ;.

Thus, from looking at these cases, we can identify two general concerns that
apply in the case where the outcome variable is potentially subject to measure-
ment error. First, the causal effect of the treatment may be on the measurement
error rather than on the concept of interest. Second, if the measurement has
a summary relationship to the concept of interest rather than a generative one,
the causal effect of the treatment ) on the concept of interest ` may fail to
have any effect on the measure ;. Thus, in practice, we need to think carefully
about both spurious effects in the first instance and spurious non-effects in the
second.
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5.2 Error in the Treatment Variable
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Figure 5.3: Measurement error in treatment
`. Causal relationships between outcome
variable . , and target concept `, indicators � ,
measure ; and other factors$.

Are things any better if our (potentially mis)measured variable is the primary
explanatory or treatment variable? The answer, unfortunately, is no; the set of
potential problems are very similar. Figure 5.3 shows the causal graph for this
situation, and again there is a crucial ambiguity. If we observe changes in ;,
these might reflect changes in ` or they might reflect changes in$. It might be
that there is a causal effect of changing ` on . , or a causal effect of changing
any of the other factors$ that influence our measure via its indicators. If all
we observe is ; and . , we have no way of distinguishing these two scenarios.
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Figure 5.4: Measurement error in treatment `,
with pragmatic measurement ; for `. Causal
relationships between outcome variable
. , and target concept `, indicators � and
measure ;.

As was the case when we considered mismeasured outcome variables in the
previous section, an additional inferential problem is introduced if we cannot
be confident that our measure has a generative relationship to the concept of
interest. Figure 5.4 shows that in this situation, there is no longer any neces-
sary implication about the effect of ` on . if we have observed an effect of ;
to . . As with the previous case, losing the directed causal path from ` to ;
undermines our ability to make causal claims involving `. For representatively
measured variables we need to worry about alternative causal pathways con-
necting ` via the measurement error; for pragmatically measured variables we
also need to worry about the possibility that changes in the measured variable
will fail to reflect, or fail to be generated by, changes in the quantity we wanted
to measure.

5.3 Error in the Control Variables

The third important case to consider is measurement error in control variables.
We include control variables to enable fairer comparisons between units with
different values of the primary explanatory / treatment variable, in cases where
that variable is not randomly assigned. But what if those control variables are
measured with error? It is common for researchers to include many controls
that they think might be associated with likely confounding, but without
strong claims that the exact variables which they include are the specific causal
source of the confounding. Is this strategy likely to eliminate omitted variable
bias, where it exists?

The answer, once again, is unfortunately no. Figure 5.5 illustrates the situ-
ation. If the outcome variable . is causally influenced by both the true value
of the control variable ` and also the treatment variable ) of primary interest,
conditioning on ; instead of ` will fail to appropriately control for ` because
; is contaminated with the other factors$.

m
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Figure 5.5: Measurement error in regression
control variable `.

To illustrate the consequences of this in a simple numerical example, imag-
ine that we are interested in the effect of a variable F on an outcome G. In
reality, the relationship between F and G follows this equation:

G = VF + WE + n



84 benjamin e lauderdale

That is, G may depend on F, but also on E. We assume that n is uncorrelated
with F and E, so this is a well-behaved regression problem, with no consequen-
tial omitted variables. Or it would be, if we have measured F and E precisely.

We do observe F exactly, there is no measurement error in our primary
variable of interest. But there is measurement error in the “control” variable
E. We do not observe E exactly, instead we observe H = E + a, which has
measurement error a with mean 0 and standard deviation fa . But remember,
we are interested in V, not W . Does it matter that we have mismeasured the
control variable E? We make the assumption that the measurement error
a = H − E is uncorrelated with F,1 so the fact that F is correlated with H also 1 If the measurement error is correlated with

F that creates an additional bias term. If you
were fantastically lucky, this might cancel out
the bias that we focus on here, but you are
not that lucky.

implies that it is correlated with E.

V̂ →> V +
Wf 2a fFfEdFE

f 2F
(
f 2E + f 2a

)
− f 2F f 2Ed2FE

(5.1)

This regression will be unbiased only if the second term is zero, which is
true if any of the following four conditions are met:

• If the coefficient on the control variable is zero (W = 0), then the coefficient
of interest is unbiased.

• If there is no variation in the (true) control variable (fE = 0), then the
coefficient of interest is unbiased.

• If the control variable is uncorrelated with the explanatory variable of
interest (dFE = 0), then the coefficient of interest is unbiased.

• If the measurement error of the control variable is zero (fa = 0), then the
coefficient of interest is unbiased.

Unfortunately, none of these are interesting or useful cases. If the coefficient
on the control variable is zero, the control variable was unneeded. If there is
no variation in the true control variable in the data, the control variable was
unneeded. If the control variable was uncorrelated with the explanatory vari-
able of interest, the control variable was unneeded. If the measurement error
of the control variable is zero, we are back to the standard regression problem
without the measurement error that is our interest here. These four conditions
cover no interesting cases: if there is measurement error in a control variable,
and you actually needed the control variable in the first place, the estimate of
the coefficient on the explanatory variable of interest will be biased.

5.4 Application - Behavioural vs Self-Reported Information Seeking

Clifford and Jerit (2018) report on two experiments that aimed to assess
whether and how emotional responses impede learning. We will focus on one
component of Study 2, which involves presenting information about dengue
fever to 748 students at the University of Houston.

“The treatment described how the climate in Houston is ideal for the spread of
dengue, how the disease can spread un-noticed, and that there is currently no
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vaccine. . . . Our primary manipulation consisted of the presence (or absence) of
three disgusting images, a common method for inducing disgust. The images
displayed symptoms of dengue fever; however, this information also was in-
cluded in the text. This design feature increased our confidence that any effects
of the images were produced by manipulated disgust rather than by some other
mechanism.”

Figure 5.6: Aedes aegypti mosquito, the
primary vector for dengue fever.

The authors then “gauged the motivation to seek new information about
dengue, using two behavioral measures and two self-reports.”

Label Scale Type

B1 Binary Behavioural
B2 Binary Behavioural
S1 Ordinal (0-4) Self-Report
S2 Ordinal (0-4) Self-Report

The treatment effects on these four outcome measures are shown in the
table below.

Measure Control Treatment Difference Interval

B1 0.195 0.135 -0.060 0.01-0.11
B2 0.223 0.157 -0.066 0.01-0.12
S1 1.252 1.281 0.029 -0.18-0.12
S2 1.244 1.237 -0.007 -0.15-0.16

Both behavioural measures exhibit significant differences between treat-
ment and control conditions: respondents exposed to the disgusting treatment
are less likely to want to be informed about a further information session and
less likely to want to receive more information about dengue. In contrast, there
is negligible difference between the treatment and control groups with respect
to the self-reported measures. Respondents were similarly likely to say they
would look up more information or discuss dengue with their family or friends
in the next week, regardless of whether they saw the disgusting images or not.

One way to read these results is to simply focus on these as different out-
comes. The treatment had an effect on some outcomes and not on others. The
treatment made people less likely to immediately sign up for more informa-
tion, but did not change their stated intention to further research and discuss
dengue fever in the future. These are easy enough to reconcile, though the
discrepancy is certainly interesting.

However, the authors’ study aims to make more general statements about
the concept of “information seeking”. If we view these measures as all reflecting
information seeking, there discrepancy becomes more relevant. Which of
these are the “right” measures of “motivation for information seeking”? Are
there biases that are likely to affect only the self-reported measures and not
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the behavioural measures, or vice versa? There are (at least) five questions that
we need to consider, in order to decide what conclusions to draw from these
results.

1. Are the behavioural measures good measures of “information seeking”?
2. Are the self-reported measures good measures of “information seeking”?
3. Is there a treatment effect on “information seeking”?
4. Is there a treatment effect on the measurement error in the behavioural

measures?
5. Is there a treatment effect on the measurement error in the self-reported

measures?

To get an initial sense for the answers to the first two questions about the
quality of the measures, we might look at the extent to which the different
measures are correlated with one another.

Table 5.3: Pairwise (pearson) correlations for the four measures of infor-
mation seeking.

B1 B2 S1 S2

B1 1.00 0.29 0.31 0.28
B2 0.29 1.00 0.30 0.23
S1 0.31 0.30 1.00 0.63
S2 0.28 0.23 0.63 1.00

All four measures are positively correlated with one another, although the
correlations are not very strong with the exception of the two self-reported
measures, which have a correlation coefficient of 0.63. The fact that all the
measures are positively correlated with one another provides some evidence
there is a common element to all four measures.2 People who tend to seek 2 This kind of pattern of positive pairwise

correlations is discussed in more detail in
Chapters 9 and 11. Applying the one of the
methods discussed in the latter of these, it is
relevant to note here that the first principle
component for the set of (standardized)
measures has similar, positive coefficients for
all four.

information in one way tend to also do so in others.
So we have some reason to believe that these four measures reflect some

more general concept that we might call “information seeking”. Nonetheless,
the low correlations strongly imply that they are all, at best, “weak” measures.
There must be substantial measurement error in these measures, or they would
be more highly correlated with one another. One plausible interpretation is
that they are all weak measures of the target concept of “information seeking”,
and the relatively strong correlation between the two self-reported measures
is not because they are better measures of the target concept, but because
they are extremely similar survey prompts or because they are measured
on 5 point ordinal scales rather than as binary yes/no responses. It is also
possible, but perhaps less substantively plausible, that it is the two self-reported
measures that are high quality and the behavioural measures lower quality.
Most researchers would assume that a behavioural measure is likely to be
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better than a self-reported measure, not worse, since it involves a costly action
and not just cheap talk. Finally, these correlations are consistent with the
possibility that one specific measure is in fact a very good measure while the
rest are very poor, but this seems implausible given what we know about how
the measures were generated.

Let’s say we accept the idea that these four measures all reflect the target
concept to similar degrees, albeit with substantial measurement error. The
answers to the three questions (Q3, Q4 and Q5) posed earlier about treatment
effects have possible answers that are interlinked.

One way to reconcile the results is that there is no treatment effect on infor-
mation seeking, rather there is a negative treatment effect on the measurement
error in the behavioural measures but not on the self-reported measures. Is this
plausible? Perhaps the presence/absence of disgusting images had no effect on
respondents interest in learning about dengue fever, but simply made them less
inclined to receive information specifically from the people running the exper-
iment. The behavioural measures were linked to getting information from the
specific people running the experiment (S2) and from an information session
with a local organization with some relationship to the experimenters (S1).
Perhaps the disgust response was not really on general interest about learning
more about dengue, but more focused on the experimenters and those that
they work with?

Another way to reconcile the results is that there is a negative treatment
effect of the disgust treatment on information seeking, there is no treatment
effect on the measurement error in the behavioural measures, and there is a
positive treatment effect on the measurement error in the self-reported mea-
sures that cancels out the treatment effect on information seeking. This is the
authors’ own interpretation of the results. Note that this is a bit more com-
plicated, as it involves countervailing treatment effects on the target concept
and the measurement error. Nonetheless, this is not implausible. The disgust
treatment may make people less inclined to seek information, but the fact that
it is emotionally engaging might also make respondents feel they ought to be
seeking out more information. This might increase social desirability biases in
responses, which would manifest primarily in the self-reported measures be-
cause they are cheap talk and do not require immediately engaging with more
disgusting information about the effects of dengue.

There are further possible interpretations that are more complicated, in-
volving more complex cancelling out of positive and negative treatment effects.
The point of this discussion was not to be exhaustive, but rather to highlight
how the potential for measurement error in an outcome variable compli-
cates the interpretation of an experiment. This is especially true where the
researcher is not interested in the outcome variables in their own right, but
rather in underlying concepts that those outcome variables are meant to mea-
sure.
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5.5 Application - Objective vs Subjective Sleep Hours

In an article “Sleep duration and health among older adults: associations vary
by how sleep is measured”, Lauderdale et al. (2016) report on a study that com-
pares subjective (self-reported) sleep hours and objective (measured with wrist
monitors) sleep hours as predictors of various health outcomes.

“Cohort studies have found that short and long sleep are both associated with
worse outcomes, compared with intermediate sleep times. While demonstrated
biological mechanisms could explain health effects for short sleep, long-sleep risk
is puzzling. Most studies reporting the U shape use a single question about sleep
duration, a measurement method that does not correlate highly with objectively
measured sleep. We hypothesised that the U shape, especially the poor outcomes
for long sleepers, may be an artefact of how sleep is measured.”

The data for this study come from a national probability sample of older
US adults, mostly aged 60-90 at the time of the study. Two survey measures
of typical sleep duration were collected, one based on a single question about
typical sleep duration (“Subjective 1”) and another calculated from reported
times when respondents went to bed and woke up (“Subjective 2”). Both of
these are typical survey measures used in epidemiologic studies of sleep. In
addition, “Objective” sleep duration was measured using an “actigraph” wrist
monitor that measures patterns of physical movement. Finer details of each of
these measures can be found in the original source article.
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Figure 5.7: Correlation between two sub-
jective measures of sleep duration and one
objective measure of sleep duration, all
measured in hours.

The first question that we might ask is how strongly correlated these dif-
ferent measures are? To what extent do these different measures capture the
same cross-sectional variation across respondents in sleep duration? Figure 5.7
shows that the correlations between these measures are weak, but nonetheless
positive. We will assume for the purposes of discussion here that the objective
measure has minimal measurement error with respect to the target concept
of actual biological sleep duration, and therefore that all error is attributable
to respondents’ misperception/misreporting of their own sleep duration. The
modest correlations here suggest that variation in how long people report they
sleep has only a weak relationship to how long they are actually sleeping.

How are these measures related to other health quantities of interest? The
authors of the original study examine a standard self-reported health question:
“Would you say your health is—excellent, very good, good, fair, or poor?” Fol-
lowing the authors of the original study, we dichotomise this into fair/poor
versus excellent/very good/good. Note that while this sort of self-reported
health question is obviously subjective, it has been validated in the epidemio-
logic literature and does predict mortality and future use of medical services
(Miilunpalo et al., 1997).

Figure 5.8 shows the partial association of fair/poor self-reported health
with all three measures of of sleep duration, controlling for age, gender and
race/ethnicity using a generalised additive model.3 The difference between the 3 Generalised additive models are regression

models that allow for flexible, non-linear par-
tial associations with continuous explanatory
variables. See Simon Wood, “Generalized
Additive Models: An Introduction with R”
(2017) for a good introduction. A similar
plot could have been generated by fitting a
multiple regression with polynomial terms
for the displayed variable.

three plots is striking: there is a U-shaped relationship between the two sub-
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jective sleep measures and fair/poor self-reported health. These relationships
are strong, with those at the extremes of subjective sleep duration 20-40 per-
centage points more likely to say they have fair/poor self-reported health. This
relationship is absent in the objective data, with only a very weak (and statisti-
caly insignificant) negative relationship between sleep duration and fair/poor
self-reported health.
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Figure 5.8: Partial association of self-reported
health with two subjective and one objective
measure of sleep duration, controlling for
age, gender and race/ethnicity.

If we take the objective measure to have minimal measurement error, we
can calculate the measurement error for each of the subjective measures as
the difference between the subjective measure and the objective measure for
each person. Figure 5.9 shows that this measurement error for the first sub-
jective measure has the same U shaped relationship with self-reported health
as above. The association of subjective/self-reported health with this mea-
sure of subjective/self-reported sleep appears to be entirely associated with
the measurement error in subjective/self-reported sleep, rather than with the
objectively measurable variation in sleep duration.
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Figure 5.9: Association of self-reported
health with measurement error in subjective
(self-reported) sleep duration.

A final, and striking, feature of the left plot in Figure 5.9 is that the minimum
is located very close to a measurement error of 0. The people with the best self-
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reported health are the people who most accurately report how many hours
they sleep. Perhaps measurement error is bad for your health?4 4 Measurement error is definitely not ran-

domly assigned, so the implicit causal infer-
ence in this statement is unjustified. A more
careful statement is that those 60-90 year
old Americans who accurately report their
sleep hours are more likely to feel healthy
than those who inaccurately report their
sleep hours. There are a number of possible
mechanisms for this, which are beyond the
scope of the discussion here.

5.6 Illustration - Measurement Error in a Control Variable

In section 5.3 above, equation 5.1 shows that a regression coefficient on an
explanatory variable of interest F will be biased due to needed control variables
E being measured with error, even if the explanatory variable of interest is
measured without error. The bias for V̂ is given by the following expression, in
terms of the true coefficient on the control variable W , the standard deviation
of the measurement error fa , the standard deviation of the control variable fE,
and the correlation of the explanatory variables F and E:

V̂ →> V +
Wf 2a fFfEdFE

f 2F
(
f 2E + f 2a

)
− f 2F f 2Ed2FE

How substantial are these biases? To get a sense, we consider a simple
case. Let’s consider the case where the true coefficient of interest V = 0,
the case where there is no true effect of the primary explanatory variable of
interest. The question, in these cases, is the extent to which our inferences
about V are biased by having a mismeasured control variable such that we
erroneously conclude that there is an association with the explanatory variable.
For purposes of illustration, we set the coefficient on the control variable
W = 1 and assume that the control variable E is correlated with the primary
explanatory variable with a correlation of dFE = 0.5.

Figure 5.10 shows how the bias in V varies as we increase the standard de-
viation of the measurement error fa , holding everything else constant. Bias
increases as the degree of measurement error fa relative to the true variation
fE in the control variable increases. As the measurement error comes to dom-
inate, fa � fE, the bias approaches the degree of bias that would result from
omitting the control variable entirely. In these plots, fa = 1 is the case where
the measurement error has the same magnitude of variation as the true control
variable fE = 1, which corresponds to the case where the measure is correlated
with the true measure at dFE = 0.71, or '2 = 0.5. At this point on these curves,
the bias is already a substantial fraction of the omitted variable bias that would
result from omitting the control entirely.
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Figure 5.10: Bias in coefficient V on primary
explanatory variable as measurement error in
control variable increases. Dotted line shows
the bias that would result from omitting the
control variable from the model.
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Figure 5.11: Top panel: bias in coefficient V on
primary explanatory variable as correlation
dFE between control variable and primary
explanatory variable varies; dotted line shows
the bias that would result from omitting the
control variable from the model. Bottom
panel: proportional reduction in bias from
including the control variable in the model.

The stronger the correlation dFE between the primary explanatory vari-
able F and the true control variable E, the more rapidly measurement error
becomes a problem. To illustrate this, we continue to examine the fa = 1 case
where half the variance of the control variable is measurement error and half is
the true control variable, but now varying dFE. The two panels of 5.11 show that
while the mismeasured control variable reduces the the bias versus no control
by half when the two explanatory variables are weakly correlated, the propor-
tional bias reduction declines as the control variable becomes more strongly
correlated with the explanatory variable of interest. The more that you need
the control variable, because it strongly confounds the variable of interest, the
more bias results from a given amount of measurement error.

5.7 Conclusion

A final, overarching point, is that measurement requires you to be attentive
to the causal relationships that generated your measure. A good measure is
one that makes the differences between the measure and the target concept as
small as possible, which makes it sound like a purely predictive problem. And it
could be, so long as you never used your measures for anything.

However, in order to use your measures in applications where you care
about the underlying concepts, rather than the measures as such, you do need
to be attentive to the causal relationships between your target concept and
your measures (typically via your indicators). It is not just that you want your
measurement error to be as small as possible, but also that you want it to be as
idiosyncratic as possible with respect to the other variables of interest. As several
of the examples above show, cases where measurement errors in one variable
have relationships to other variables of interest are particularly likely to lead to
spurious conclusions.



6
Deriving Scales using Theory

This chapter discusses general strategies for deriving scale measures from
theoretical arguments, with a large number of worked examples. Because theo-
retical arguments are necessarily specific to particular applications, most of the
chapter consists of the applications. The examples we will be considering all
involve concepts that are in some sense “close” to the data: we have data that is
clearly relevant to the concept we are interested in, but there is more than one
way that we might translate the data into a measure and so we need to think
about which one to choose.1 1 Even apparently simple measurement

problems can have myriad solutions: Choi
et al. (2010) compile a survey of 76 published
measures of similarity and distance between
two vectors of binary quantities.

6.1 Axiomatic Analysis

One strategy for deriving a measure—or for checking whether a measure you
have otherwise derived makes sense—involves setting out axioms that the
measure should satisfy. Listing these is a very useful way of figuring out the
connection between the concept that you are interested in and the data that
you have to work with. Here are five criteria that frequently form the basis of
useful axioms.

1. Special/extreme/limiting cases. What should happen to the measure when
the observable data go to their limits? Depending on your application, the
limits might be −∞, 0, 1,∞ or some other value that is relevant.

2. Equal cases. Which distinct profiles of the indicator data correspond to the
same values of the concept of interest?

3. Derivative conditions. What are the directions of the associations between
the data/indicators and the concept of interest? That is, when an indicator
goes up/down, what should happen to the measure?

4. Continuity and smoothness conditions. Is the relationship between the
data/indicators and the concept continuous or does it have discontinuities?
Is the relationship smooth or does it have kinks (discontinuities in the first
derivatives)?

5. Functional form restrictions. Is there a reason to restrict the possible rela-
tionships between the data/indicators and the measure to a simple family of
possible functions?
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Unlike the first four criteria, functional form choices tend to be arbitrary,
but are useful in getting to a specific measure that is not too complicated to
work with once you have satisfied all the other conditions. You can think of
these as applying something like Occam’s Razor: “everything should be made as
simple as possible, but no simpler.”

Note that one need not have all of these in a list of axioms, these are just
examples of the kinds of axioms that are typically useful to specify, and that
you should therefore consider.

6.2 Dimensional Analysis

Any time you are making a claim to have measured something, it is impor-
tant to assess whether the units of the measure are internally consistent. This
process of dimensional analysis is widely used when solving problems in the
physical sciences, particularly for checking the plausibility of a final calcu-
lation. It is more rarely taught in the social sciences (particularly outside of
economics). At its core, dimensional analysis is nothing more than ensuring
that you never make statements like “my height is 70 kilograms”.

To do dimensional analysis, you need to work out the dimensions of all the
quantities that you are working with. These could be time, money, people, etc.
Mathematically, each of these dimensions is described in terms of some units,
for which there might be several choices. Time might be measured in units of
days or years; money might be measured in units of $s or £s, people might be
measured in units of people or in thousands or millions of people.

One of the basic mathematical operations that one learns to do as a child is a
unit conversion:

1 day × 1 years
365.25 days

=
1

365.25
years

1 £ × 1 $
0.78 £

= 1.28 $

Unit conversations rely on the basic mathematical fact that you can always
multiply a quantity by 1 without changing that quantity. The unit conversion
ratios used in the expressions above, eg 1 years

365.25 days , are themselves equal to 1.
The dimension of the numerator and the denominator are the same (time) but
the units (years versus days) are not.

1 years
365.25 days

=
365.25 days
365.25 days

= 1

This means that not only are these ratios equal to 1, they also are also dimen-
sionless overall, so multiplying by a unit conversion ratio does not turn a unit
of time into a unit of something else.

There are many quantities that we are interested in that have compound
dimensions/units. For example, per capita Gross Domestic Product (pcGDP)
is a widely used measure of the economic output of countries. It has dimen-
sions of money per person per time period, typically US$ per person per year
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( {$}
{person}{year} × {persons}). These units help indicate which kinds of math-
ematical operations make sense. For example, if we wanted to calculate total
GDP for a country, we would multiply per capita GDP by the number of people
in that country, which cancels out the units of {persons} from the denomina-
tor of pcGDP:

>2��% × %=>C:0B7=< = ��%
{$}

{person}{year} × {persons} =
{$}
{year}

In general, if you are doing a sensible mathematical operation, it will obey a
few key rules:

1. If you want to add (+), subtract (-) or compare (=,<,>) two numbers 0 and 1,
they must have the same units {0} = {1}. The resulting units after addition
or subtraction remain the same.

2. You can multiply (·) and divide (/) numbers with different units. If 0 has
units {0} and 1 has units {1}, then 0 · 1 has units {0} · {1} and 0/1 has
units {0}/{1}. By implication, if you raise a quantity 0 to the power >,
{0>} = {0}>.

3. Summation (
∑
) and integration (

∫
) across the entire set of units multi-

plies the units of the summand/integrand by the units of the summa-
tion/integration limits. Thus,

{∑<
7=1 0

}
= {<} · {0} and

{∫ F1

F0
0 · 3F

}
=

{F} · {0}.

It can sometimes be slightly tricky when doing a sum (
∑
) to figure out

whether the units remain the same (following rule 1) or are multiplied by the
dimension that you are summing over (following rule 3). The reason that this
can be confusing is that summation and integration are really surreptitious
multiplication. The distinction usually turns on whether you are simply adding
two quantities (in which case, rule 1) or whether you are cumulating the quanti-
ties (in which case, rule 3), but this distinction can sometimes be tricky to figure
out in particular problems.

6.2.1 Standardization

If we want to find the distance in two spatial dimensions between two points,
F1, G1 and F2, G2, we can see that Euclidean distance �2 satisfies dimensional
analysis:

�2 =
√
(F2 − F1)2 + ( G2 − G1)2 (6.1)

{:4<6Bℎ} =
√
{:4<6Bℎ}2 + {:4<6Bℎ}2 (6.2)

The same is true of “city-block” distance �1:

�1 = |F2 − F1 | + | G2 − G1 | (6.3)

{:4<6Bℎ} = {:4<6Bℎ} + {:4<6Bℎ} (6.4)
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If you were instead constructing a time-based measure of distance between
two locations, that would involve decomposing travel between those locations
into a sequence of steps, each of which are denominated in time, and then
adding them up.

Distance (or dissimilarity) is a useful concept in a variety of areas, but some-
times runs into problems with units. Can you define distances without com-
mon units? Is it meaningful to talk about whether a 30 year-old male is closer
to a 25 year-old woman than to a 50 year-old man? Dimensional analysis is use-
ful here for illustrating what you would need to assume in order to make such
a claim.

In this example, we have two component distances: a distance in units of
years of age and a distance in units of gender. In order to add these together
to form a “city-block” distance �1, or to apply the Euclidean distance formula
�2, we need to transform these two distances to have the same units. But how
can we possibly do that? Well, if we have something with units of years, and
we want to “convert” it to some other units, the simplest way to do that is to
multiply it by something with units of {desired units}/{years} or divide it by
something with units of {years}/{desired units}.

One common way to do this is called “standardizing” a variable F, which
involves calculating its mean F̄ and standard deviation A3(F), and defining a
new variable FA = F−F̄

A3 (F) . What are the units of this?

FA =
F − F̄
A3(F) (6.5)

{FA} =
{F} − {F̄}
{A3(F)} (6.6)

{FA} =
{F} − {F}
{{F}/{A3}} (6.7)

{FA} = {A3} (6.8)

You might reasonably look at the above and say: “what do you mean by a
unit of standard deviation?” But that is the key idea of standardization: you are
redefining the variation in F to be measured in standard deviations (of F). Of
course this means that you have not entirely fixed the problem. If you apply
this transformation to a series of variables in different units, you will have
distances that are measured in the standard deviations of those variables. If you
then add those up, you are treating the standard deviations of the variables in
your data as comparable in the sense that you can talk about two units being
closer together on variable F1 than on F2 if they are different by 0.5 standard
deviations on the former variable and 1.3 standard deviations on the latter.

Standardization makes the units numerically comparable (mostly falling
between -2 and +2) and you can talk about the differences in distances on
the different dimensions more comfortably. This does not mean that it is
necessarily a good idea to do so! If you went around saying that 30 year-old
men are more like 50 year-old men than like 25 year-old women, people would
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rightly look at you as though you were a bit daft. “What do you mean ‘more
like’? ‘More like’ in what sense?” The only answer justified by standardization is
“in terms of their distributions in the adult population”, which may not be very
convincing.

The standard deviation of a binary 0, 1 variable for gender is approximately
0.5; in an adult population the standard deviation of age is about 20 years. So
a man and a woman are 2 standard deviations apart on gender. The 5 year age
gap is 0.25 standard deviations while the 20 year age gap is 1 standard deviation.
As a result, regardless of whether you use Euclidean or city-block distance,
you would conclude that the 30 year-old man is more like a 50 year-old man
(�1 = 1, �2 = 1) than like a 25 year-old woman (�1 = 2.25, �2 = 2.02).
You can do this, and people do it implicitly every time they make comparisons
across standardized variables, but please note that there is a bit of a cheat
involved and you are relying on the population/sample variation in all the
component distances being equally meaningful in your application. It may
not be. Note that if, in a particular application, you had some other way of
translating the F values onto a common scale that was more meaningful than
using the sample/population variation, you could use that instead.

A multivariate generalization of standardization is the Mahalonobis dis-
tance,2 which rescales any number of interval-level variables (plus binary 2 Prasanta Chandra Mahalanobis (1893-1972)

developed this measure with the goal of
taking a large number of different kinds
of measurements of humans in order to
associate patterns of physical differences
with Indian castes. Like so many of the
methods covered in this book, this measure
was developed for dubious classification of
human populations.

variables, as with gender above) into a distance that is calculated in terms of the
covariance matrix of those variables. Where F1 and F2 are vectors correspond-
ing to measurements of any number of such variables for two observations,
and the covariance matrix of those variables in the sample or population is (:

�" (F1, F2) =
√
(F1 − F2) ′(−1 (F1 − F2) (6.9)

For uncorrelated variables this reduces to the Euclidean distance of the
variables when standardized as above. For correlated variables, it makes a
sometimes useful distinction between units that differ across multiple variables
in ways that are typical given the correlations of those variables (smaller dis-
tance) versus ways that are atypical given the correlations of those variables
(larger distance), as depicted in Figure 6.1. The Mahalonobis distance is used as
a metric for clustering/classifying units that have measurements across many
dimensions, for matching treated and untreated units in causal inference and
for identifying units that are outliers in a multivariate rather than a univariate
sense.

Figure 6.1: By Mahalonobis distance, the red
points are more distant from one another
than the blue points, even though the
Euclidean distance is identical.

6.2.2 Regression

You may not have thought about it, but regression models face precisely the
same unit comparability problem that we have just discussed. How is it that
we can fit a regression model that adds up effects of variables F1, F2, etc, which
are measured on all sorts of different scales and relate those to a variable G
measured on its own scale? This is a question that more attentive students are

https://en.wikipedia.org/wiki/Mahalanobis_distance
https://en.wikipedia.org/wiki/Mahalanobis_distance
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sometimes bothered by when they first see a multiple regression model.
The answer is that the V coefficients fix the unit problem:

G = U + V1F1 + V2F2 + · · · + n (6.10)

{G} = {G} + {G}{F1} {F1} +
{G}
{F2} {F2} + · · · + {G} (6.11)

{G} = {G} + {G} + {G} + · · · (6.12)

You already know this implicitly because you know how to interpret a
regression. The units of U, the intercept, are the same as the units of G, because
U is the expected value of G when all F equal 0. The units of V1 are

{G }
{F1 } because

the interpretation of that coefficient is the change in G for each one unit change
in F1.

Note that this also explains why, if you want to compare the magnitudes
of different Vs to one another, you need to first standardize your X variables
as we discussed in the previous section. This puts the Vs on a common(ish)
scale: units of G per standard deviation of F. This relates everything to the
distribution of F in your data. Again, as noted above, this may or may not be
desirable, but you do have to make some kind of assumption like this in order
to make comparisons across variables on different scales.

6.3 Application - The Debt-GDP Ratio of Countries

Figure 6.2: Oily House Index
https://xkcd.com/2327/

For our first example, we focus on a very simple case of thinking about how
units can clarify what operations and comparisons are sensible. During the
European sovereign debt crisis that started in 2009, there was extensive use of
the debt-GDP ratio as a measure of the sustainability of countries borrowing.
The numerator of this measure of debt is the total amount of money that the
government was currently borrowing from bond holders. The denominator is
the current gross domestic product (GDP) of the same country.

https://en.wikipedia.org/wiki/Debt-to-GDP_ratio
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In 2011, for example, Greece was borrowing about =C360 billion from various
creditors. Greek GDP in 2011 was =C207 billion per year. The debt-GDP ratio of
Greece was therefore 360/207 = 1.74.

But what are the units of this ratio? Debt has units of {billion =C}, GDP has
units of {billion =C}/{years}, therefore the units of the dept-GDP ratio are:

{debt-GDP ratio} = {billion
=C}

{billion =C}
{years}

= {years} (6.13)

Why does the debt-GDP ratio have units of years? Debt is a quantity of
money. GDP is a quantity of money produced per year. We are comparing
a level (debt) to a flow (GDP). The ratio tells us how many years worth of the
gross domestic product of the country are required to equal the total outstand-
ing debt. In this case, Greece’s outstanding debt load was equal to 1.73 years of
the entire economic product of the country, which was viewed as an exception-
ally high level of debt at the time.3 That is a coherent quantity to calculate and 3 According to the IMF, as 2020, the Greek

debt-GDP ratio is 2.01, the second highest in
the world. Japan has a debt-GDP ratio of 2.52.
Japan’s debt-GDP ratio has been the highest
in the world for decades.

is relevant for benchmarking debt against the ability to pay off that debt. Of
course a country cannot simply devote its entire national product to paying off
its creditors as everyone would starve to death. In order to calculate the time
necessary to realistically pay down a debt, one would need to further calculate
the proportion of GDP that could feasibly be devoted to that purpose.4 4 Similar ratios of debt to income are used

when people apply for mortgages to buy a
home. Even though home mortgages have
higher interest rates than governments
typically pay, much higher debt ratios are
supportable for home purchasers than for
governments because individuals can devote
far more of their personal income to paying
off that debt than a government can feasibly
tax and then devote to debt service. In the
UK, as of 2020, most mortgage lenders will
lend up to 4.5 times annual income.

6.4 Application - Measuring Inequality

There are many kinds of social inequality that we might want to assess, with
respect to a variety of “goods” such as wealth, income, life expectency, and
others. How do we numerically measure the extent of inequality? One useful
starting point for defining a measure of inequality is the distribution of the
relevant good. We assume, for our purposes here, that we are looking at a sin-
gle good G7 measured for < individuals (or households or some other relevant
unit). Any translation of multiple kinds of goods into this single metric (eg
monetary value) has already occurred. We also assume that we have solved any
difficulties in measuring the G7, how much of the good each individual has.

So, if we know how much of a good G7 each of the individuals 7 in our
population has, how do we translate these into a single number describing the
level of inequality among that set of individuals? There are many functions
� ( G1, G2, . . . G<) we could calculate given a set of G7, which ones best map onto
the concept of inequality? Before we start proposing statistics, it might be
wise to try to specify some axioms. Here are some of the axioms found in the
economics literature on measuring inequality:

• Axiom 1 (symmetry): It does not matter which individuals have more or
less of the goods, all that matters is the distribution 5 ( G7). So if we swap the
total goods held by any two individuals G7 and G7′ , the measure of inequality
should not change.

https://www.imf.org/external/datamapper/G_XWDG_G01_GDP_PT@FM/ADVEC/FM_EMG/FM_LIDC/GRC?year=2020
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• Axiom 2 (homogeneity): It does not matter how large/small the total quan-
tity of goods are, just their relative value. So if we multiple all G7 by a com-
mon factor 0, the measure of inequality should not change.5 5 Note that this axiom ensures that we get

the same measure of inequality regardless of
which units we measure G in, so that the level
of inequality in a society does not change if
we convert from £s to $s for example.

• Axiom 3 (population independence): It does not matter how many individ-
uals there are in the population. If we calculate the level of inequality based
on G1, G2, G3, . . . , G< the measure of inequality should be the same as if we
calculated it for G1, G1, G2, G2, G3, G3, . . . , G<, G<.

• Axiom 4 (transfer): If we take a small amount of the good from an individual
7 with a larger than average G7 and give it to the individual 7′ with a smaller
than average G7′ , the level of inequality should decrease.

• Axiom 5 (minimum): The lowest level of our measure of inequality is found
if (and only if) all individuals have the same amount of the good (perfect
equality), G1 = G2 = . . . = G<.

• Axiom 6 (maximum): The highest level of our measure of inequality is found
if (and only if) one individual has all of the goods.

These all seem like sensible axioms. Note that the first three do not really
say much about inequality per say, but the last three do. In particular, axiom
4, the transfer axiom, is vital to enforcing the concept of inequality. Note that
there are many different ways that this could be stated, more or less precisely.
Note also that the axiom, as stated, implies that the reverse transfer from
someone with less than average G to someone with more than average G will
increase inequality, so we do not need to state that as a separate axiom.

It turns out that there are lots of measures of inequality that satisfy all (or
most) of these axioms.6 Some of these are simple ratios of how much “the rich” 6 There are further axioms that one can

define, such as having a measure that can
be mathematically decomposed into contri-
butions from subgroups, in order to more
narrowly define the set of measures that meet
all axioms.

have to how much “the poor” have:

• The 20:20 ratio is the ratio of the total goods held by the top 20% of individ-
uals to the total goods held by the bottom 20% of individuals.

• The Palma ratio is the ratio of the total goods held by the top 10% of individ-
uals to the total goods held by the bottom 40% of individuals.

These are dimensionless quantities, as they are a quantity of goods divided
by another quantity of goods. Note that somewhat arbitrary choices are re-
quired to define these ratios. Why 10%, 20% or 40%? The idea of a ratio of how
much more the rich have than the poor have is attractive, but leaves open the
question of who qualifies as rich and who qualifies as poor. Another feature of
these ratios is that they ignore the incomes of the middle of the distribution
entirely, which may or may not be a desirable feature (Cobham et al., 2013).
Shifting a small amount of income from someone a bit above the average to
someone a bit below the average will (for most distributions of income) have
no effect on these measures (Axiom 4 above is weakly violated).

Several measures exist that act on the entire distribution of G.

• The Hoover Index/Robin Hood index The (minimum) proportion of the
total good

∑
7 G7 that would need to be transferred from the individual that

https://en.wikipedia.org/wiki/Income_inequality_metrics
https://en.wikipedia.org/wiki/Hoover_index
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currently has it to another individual in order to achieve perfect equality.

��==D4@ =
1
2<

∑
7

| G7 − Ḡ |
Ḡ

• The Gini coefficient The Gini index can be described in several ways. One
way is as the average difference between the goods G7 held by all pairs of
individuals, relative to the average goods Ḡ.

��7<7 =
1
2<2

∑
7

∑
7′

| G7 − G7′ |
Ḡ

• The Coefficient of Variation The coefficient of variation is the standard
deviation of goods A3( G) divided by the mean level of goods Ḡ. This can be
written similarly to the two measures above.

��+ =

√√
1

< − 1
∑
7

( G7 − Ḡ)2

Ḡ2

• The Theil Index The Theil Index does not have a simple interpretation in
terms of differences in income, because it is derived from information
theory.

�)ℎ47: =
1
<

∑
7

G7

Ḡ
log

(
G7

Ḡ

)
Like the ratio statistics, these are also all dimensionless quantities. If we

look at the Hoover/Robin Hood Index, we can easily demonstrate this:

��==D4@ =
1
2<

<∑
7

| G7 − Ḡ |
Ḡ

{��==D4@} =
{1}

{2}{>4@A=<A}

{>4@A=<A}∑ |{6==3A} − {6==3A}|
{6==3A}

{��==D4@} =
{1}

{>4@A=<A}

{>4@A=<A}∑ {6==3A}
{6==3A}

{��==D4@} =
{1}

{>4@A=<A}

{>4@A=<A}∑
{1}

{��==D4@} =
{1}

{>4@A=<A} {>4@A=<A}

{��==D4@} = {1}

The fact that these are all dimensionless quantities is not an accident; if you
try to use a measure that is not dimensionless you will quickly discover that it
inevitably violates axiom 2. For example, what if we just used the standard de-
viation of the income distribution as our measure of inequality? The standard
deviation is a measure of dispersion—how spread out a distribution is—and
surely that captures the concept of inequality? But the standard deviation has

https://en.wikipedia.org/wiki/Gini_coefficient
https://en.wikipedia.org/wiki/Coefficient_of_variation
https://en.wikipedia.org/wiki/Theil_index
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dimensions of {6==3A}:

A3( G) =

√√
1

< − 1

<∑
7

( G7 − Ḡ)2

{A3( G)} =

√√
1

{>4@A=<A} − 1

{>4@A=<A}∑
({6==3A} − {6==3A})2

{A3( G)} =
√
{6==3A}2

{A3( G)} = {6==3A}

This will get bigger as the total quantity of goods increases for a given set of
individuals, violating axiom 2.

One of the important features of this example is that there are competing
indices of inequality. There is not just one single measure that captures the
concept of inequality from a collection of G7, even once you have settled on
a single good G that is measured at the individual level. There are many co-
herent ways to map a set of G = G1, G2, . . . , G< into a single number that seem
consistent with the target concept of “inequality”, as specified by the axioms
above.

Given that they all satisfy the axioms, how do these different indices differ?
One way that they differ is in the range that they cover. The ratio statistics—
the 20:20 and Palma—have a minimum inequality of 1 and a maximum inequal-
ity that is unbounded. The Hoover and Gini statistics have a minimum of 0 and
a maximum of 1 (or more precisely, 1 − 1/<). The coefficient of variation has a
minimum of 0, and a maximum that increases as

√
(<) with the size of the pop-

ulation. The Theil Index has a minimum of 0 and a maximum that increases
as log(<) with the size of the population. It does not really matter whether the
minimum of the measure is at 0 or 1; however the question of whether max-
imum inequality should depend on the population size is a more interesting
question. Is a society with 10 people, only one of whom has all the goods, less
unequal or just as unequal as a society with 100 people, only one of whom has
all the goods? The 20:20 and Palma ratios give the same answers (∞) in both
cases, the Hoover and Gini give very nearly the same answers (≈ 1) in both
cases, but the coefficient of variation and the Theil index both indicate that the
100 person society is substantially more unequal than the 10 person society.
Different choices here could be the basis of another axiom, or a refinement of
the existing axiom 6.
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Figure 6.3: Large sample income distribution
used for simulations.

How strongly associated are these different indices with one another? The
answer to this depends on which range of distributions of G you are interested
in. In the extreme edge cases near perfect inequality, they do tend to make very
different relative statements. However, most societies are not very close to
perfect inequality!

Figure 6.4 shows pairwise comparisons of these six inequality measures
for 1000 simulated 100 person societies, generated from symmetric Dirichlet
distributions with U = 1. This is a somewhat arbitrary choice, but it does
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generate societies with varying degrees of inequality over a moderate range of
inequality, albeit without any very equal or very unequal societies.
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Figure 6.4: Pairwise comparisons of inequal-
ity measures for 1000 simulated societies.

For moderate ranges of inequality, the different measures are generally
highly correlated with one another (although the 20:20 ratio less so than the
others). This is at least a plausibility check that they are measuring similar con-
ceptualisations of the concept of inequality, although this does not tell us that
they are good conceptualisations of that concept. The case for these measures
capturing the concept of inequality well has to come from the axioms, not from
the mere fact that they are correlated with one another in a simulation like this.

6.5 Application - Measuring Poverty

The problem of measuring poverty is clearly related to the problem of mea-
suring inequality, but these are distinct concepts. The most crucial difference
is that the concept of poverty introduces the idea of a threshold: the idea that
individuals are either poor or not poor. While one can talk about the depth
or intensity of poverty (eg the poor vs the very poor), the concept aims to fo-
cus our attention on a binary distinction and an absolute threshold in a way
that inequality does not. Note that the axiom 2 that we considered above for
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inequality should not apply to poverty: if we make everyone twice as well off,
poverty should go down, not stay the same.

The most widely used measures of poverty at a (sub-)population level are
based on the idea that there is a poverty threshold H that we define ex ante.
The question, then, is how we translate a set of individual incomes G7 into an
aggregate measure of poverty for a set of people 7 ∈ 1, 2, . . . , < (a population).
Foster et al. (1984) describe a family of poverty indices with the following
functional form:

%U ( G, H) =
1
<

?∑
7

( H − G7
H

)U
(6.14)

The sum is not over all < individuals in the population, but rather over the ? in-
dividuals who are below the poverty threshold, for whom H− G7 is positive. The
incomes of the individuals above the threshold (G7 > H) make no contribution
to the calculation, except through increasing the population <.

The authors write that “[t]he parameter U can be viewed as a measure of
poverty aversion: a larger U gives greater emphasis to the poorest poor” (p763).
While U can in principle be set to any non-negative real number, the most
widely used measures are those for U = 0, 1 and 2:

%0 ( G, H) =
1
<

?∑
7

( G7 − H
H

)0
=
?

<

%1 ( G, H) =
1
<

?∑
7

( G7 − H
H

)1
%2 ( G, H) =

1
<

?∑
7

( G7 − H
H

)2
Note that, as with the inequality measures, these are all dimensionless quanti-
ties. The core fraction

( H−G7
H

)
is dimensionless, and so any exponent U thereof is

as well. Similarly, the averaging 1
<

∑?

7
is also dimensionless.

The measure %0 ( G, H) is called the “headcount ratio” because it is simply the
ratio of the number of poor persons to the population: the fraction of poor
people in the population. This measure is insensitive to how far below the
poverty line people are, the poorest poor count the same as the narrowly poor.

The measure %1 ( G, H) is called an “income-gap measure” because it indi-
cates, on average, how far poor people are below the poverty line. This mea-
sure is sensitive to how far below the poverty line people are on average, but
makes no distinction between a case where G1 = 0.1H and G2 = 0.9H and a case
where G1 = G2 = 0.5H. They are both cases where %1 ( G, H) = 0.5.

The measure %2 ( G, H) is a measure that particularly emphasises the presence
of the poorest poor, as taking the square of the income gap

( G7−H
H

)2 treats
incomes far below the poverty threshold as much worse that those just below.
Figure 6.5 illustrates the relative contributions of different values of G7 to each
of the three measures.
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Figure 6.5: Contribution to poverty measure
for different individual values, relative to the
poverty line.
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Foster et al. (1984) describe different axioms that these measures do (and do
not) satisfy, noting that the %2 measure satisfies additional desirable axioms
that %0 and %1 do not. Here, we can simply note that they place different em-
phasis on incomes just versus far below the poverty threshold. The headcount
measure %0 is surely the most intuitive “poverty rate”, but Figure 6.5 high-
lights that it has some potential pathologies. It puts a lot of weight on being
just above vs just below H, and makes no distinctions among different levels
of poverty below H. This potentially makes it more sensitive to the choice of
threshold value as well, whereas %1 and %2 treat individuals just above ver-
sus just below the threshold very similarly, reflecting their similar incomes
and experiences. In some applications the simplicity of %0 may be sufficiently
advantageous to overcome these limitations, but in others it may make more
sense to use measures that capture the depth of poverty in some way.

6.6 Application - Effective Party Count

Political scientists interested in how party systems work in different countries
often would like to characterize how many parties there are competing in
different political systems. Some electoral systems encourage lots of parties
to form while others encourage consolidation into a small number of major
parties.

The obvious way to measure the number of parties competing would be to
count all the parties who receive votes in an election, but it becomes imme-
diately clear when you look at data on election results that this will not work
because most countries have large numbers of very small parties which have
very little consequence for politics. If you are interested in how many parties
are competing in a meaningful sense, rather than simply how many exist, you
need a measure that is designed to get at that concept, rather than how many
parties/candidates are simply standing for election.7 Otherwise your measure 7 Note for US readers: in the US candidates

“run” for office, in the UK candidates “stand”
for election. Whatever joke might occur to
you here is unoriginal.

of the number of parties in a political system will be largely determined by how
easy it is for crackpots to get on the ballot and how write-in votes are or are
not reported in election results.8 8 Note the similarity to the poverty measure

example. Making simple binary distinctions
between poor and not poor or party receiv-
ing votes vs not receiving votes might seem
superficially attractive, but it often does not
yield a measure with desirable properties.

To give an illustration of the problem, consider the UK 2017 general elec-
tion. For the moment, let us consider just the parliamentary constituency of
Maidenhead, which is west of London and which was the constituency of the
sitting Prime Minister and leader of the Conservative Party, Theresa May. She
easily won re-election, with 65% of the vote in her constituency (37,718 votes).
In the UK, there is a rich tradition of eccentric minor candidates choosing the
stand against the Prime Minister in his/her constituency. For the modest price
of the £500 deposit that they lose when they fail to get 5% of the vote, they get
to appear on television next to the Prime Minister as the results are announced
on election night. Theresa May therefore had 12 opponents in her constituency,
including Bobby Smith of the Give Me Back My Elmo party (dressed in an
Elmo suit), Howling Laud Hope of the Monster Raving Loony party, and Lord

https://en.wikipedia.org/wiki/Howling_Laud_Hope
https://en.wikipedia.org/wiki/Lord_Buckethead
https://en.wikipedia.org/wiki/Lord_Buckethead
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Buckethead of the Gremloids party.

Figure 6.6: Theresa May speaks upon her
2017 re-election as MP for Maidenhead
constituency.

So, should we think of Maidenhead constituency as having had a 13-way
competition? Or should we think of it as barely having any competition at all,
given that the Conservative candidate won 65% of the vote, with the “most”
competitive Labour and Liberal Democratic candidates far behind on 19% and
11% respectively?

In order to translate election results like this into a meaningful measure of
competitiveness, political scientists have developed a variety of measures of
“effective party count”. The most widely used such measure is one described by
Laakso and Taagepera (1979) which is a function of the share >7 of votes or seats
(depending on application) secured by each party 7:

#effective =
1∑<
7=1 >

2
7

(6.15)

This is not the only such measure that one might use, and there have been a
series of subsequent papers in political science promoting alternative measures
(Molinar, 1991; Dunleavy and Boucek, 2003; Golosov, 2010). We will focus here
on the measure by Laakso and Taagepera, and return to some of the proposed
alternatives later.

Table 6.1: Results of 2017 UK General Election in the constituency of
Maidenhead.

Candidate Party Votes Percent

Theresa May Con 37718 64.8
Pat McDonald Lab 11261 19.3
Tony Hill LD 6540 11.2

https://en.wikipedia.org/wiki/Lord_Buckethead
https://en.wikipedia.org/wiki/Lord_Buckethead
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Candidate Party Votes Percent

Derek Wall Green 907 1.6
Gerard Batten UKIP 871 1.5
Andrew Knight Animal Welfare Party 282 0.5
Lord Buckethead Ind 249 0.4
Grant Smith Ind 152 0.3
Howling ‘Laud’ Hope MRLP 119 0.2
Edmonds Victor CPA 69 0.1
Julian Reid The Just Political Party 52 0.1
Yemi Hailemariam Ind 16 0.0
Bobby Smith Ind 3 0.0

If we work out the value of this measure for Maidenhead constituency, it
gives an effective party count of 2.13. This is mostly driven by the top three
parties (see Table 6.1). If we grouped all candidates and votes for remaining
parties into a single category of “Other”, the effective party count would be 2.12.
The fact that there are 10 candidates sharing the last 4.7% of the vote rather
than just one makes almost no difference to this measure.

The measure successfully focuses our attention on how many “serious” par-
ties/candidates there are. In this case, very roughly speaking, there is one
dominant party and two weak competitors from the Labour and Liberal
Democrat parties, and the value of the measure (about 2) is meant to reflect
that numerically. Arguably there really is only one competitive party in this
constituency, and some of the debate about this measurement problem in the
political science literature is about whether examples like this should even be
given effective party counts as high as 2.13, or whether the appropriate value
should be closer to 1.

Zooming out to the UK as a whole, we can do the same calculation. There
were 73 registered parties9 fielding candidates in the election, but the effective 9 While the Monster Raving Loony party

is registered party with 12 candidates in
different UK constituencies, Lord Buckethead
is bundled in with other independents in
these calculations.

number of parties according to the Laakso and Taagepera measure is still just
2.89. The reason that it is not higher than this is that just two of those parties
secured 82% of the vote (see Table 6.2). The fact that the remaining vote was
highly fragmented gets very little weight in this measure.

Table 6.2: Results of 2017 UK General Election by party.

Party Votes Percent

Conservative 13636684 42.3
Labour 12877918 40.0
Liberal Democrat 2371861 7.4
Scottish National Party 977568 3.0
UK Independence Party 594068 1.8
Green 525665 1.6
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Party Votes Percent

Democratic Unionist Party 292316 0.9
Sinn Fein 238915 0.7
Plaid Cymru 164466 0.5
Independent 151471 0.5
Social Democratic and Labour Party 95419 0.3
Ulster Unionist Party 83280 0.3
Alliance 64553 0.2
Speaker 34299 0.1
The Yorkshire Party 20958 0.1
National Health Action Party 16119 0.1
Christian Peoples Alliance Party 5869 0.0
People Before Profit Alliance 5509 0.0
Ashfield Independents 4612 0.0
British National Party 4580 0.0
Monster Raving Loony Party 3890 0.0
Liberal 3672 0.0
Women’s Equality Party 3580 0.0
Traditional Unionist Voice 3282 0.0
The North East Party 2355 0.0
Pirate Party 2321 0.0
English Democrats 1913 0.0
Christian Party, Proclaiming Christ’s Lordship 1720 0.0
Independent Save Withybush Save Lives 1209 0.0
Socialist Labour Party 1154 0.0
Animal Welfare Party 955 0.0
Justice and Anti-Corruption Party 842 0.0
Southampton Independents 816 0.0
Workers Revolutionary Party 771 0.0
Workers Party 708 0.0
Something New 552 0.0
Demos Direct Initiative Party 551 0.0
Libertarian Party 524 0.0
Social Democratic Party 469 0.0
The Peace Party 468 0.0

In their paper on effective party count measures, Laakso and Taagepera
(1979) list 6 axioms that they think an effective party count measure ought to
satisfy. Here they are, slightly rewritten:

1. If all components have equal vote/seat shares, then the effective number
must be the same as the actual number of parties: #effective = <.

2. If all components except one have zero vote/seat shares, there is only one
effective party: #effective = 1.
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3. Adding zero-share parties should not change #effective.
4. Small changes in component shares must lead to small changes in #effective.
5. Relabeling which parties get which indices should not change #effective

6. Vote shares must be transformed in a consistent way 5 (>7) and cumulated
additively such that the formula includes the expression

∑<
7=1 5 (>7).

Axioms 1, 2 and 3 each identify special/limiting cases where we know what
the answer should be on theoretical grounds, given the target concept. Axiom
4 is a continuity condition. Axiom 5 is an example of specifying different cases
(permutations of the indices) that should yield the same measure. Axiom 6
is a functional form restriction, intended to limit the range of mathematical
possibilities to relatively simple functional forms. Axiom 6 is not dictated by
the concept of “effective parties”, it is included by the authors for convenience.

Does the formula that we saw earlier, #effective = 1∑<
7=1 >

2
7

satisfy all these
conditions?

1. If all components have equal vote/seat shares, >7 = 1/# and therefore

#effective =
1∑<
7=1 >

2
7

=
1∑<

7=1 1/<2
=

1
</<2 = < (6.16)

2. If all components except one have zero vote/seat shares, then >1 = 1 and
>7 = 0 for all 7 > 1, and therefore

#effective =
1∑<
7=1 >

2
7

=
1

12 + 02 + 02 + · · · = 1 (6.17)

3. Adding zero-share parties does not change #effective because this involves
adding 02 = 0 to the (non-zero) denominator.

4. A small change in the component shares involves moving a small propor-
tion of the vote/seat X from one component to another. 1

(>1+X)2+(>2−X)2+··· =
1

(>21+2X >1+X2+>22−2X >2+X2+···
. As X → 0, this→ 1

>21+>22+···
.

5. Relabeling which parties get which indices does not change #effective because
the order in which terms are added in the denominator has no consequence.

6. Vote shares are transformed in a consistent way 5 (>7) = >2
7
and cumulated

additively such that the formula includes the expression
∑<
7=1 >

2
7
.

Dunleavy and Boucek (2003) argue that the Laakso and Taagepera measure
fails to respect an additional criteria that they (Dunleavy and Boucek) think
a measure of effective parties ought to respect. Figure 6.7 shows how there
is a “kink” in the Laakso and Taagepera effective party count measure in the
“minimum fragmentation conditions” as the largest party’s vote share falls
below 50% and an additional party is added to the system. A kink is not a
discontinuity where the level of the measure jumps, but is a discontinuity
in the first derivative (rate of change) of the measure. Note that “minimum
fragmentation conditions” implies two parties if the largest party is at or above
50%, and three parties if the largest party is below 50%. The kink in this plot
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occurs around the point where there are two parties that each have 50% of
the vote, where #effective = 2. The authors are showing that if you move to
a 51-49 split between these two parties, the effective parties #effective = 1.999
barely declines, but if you instead add a very small third party to create a 49-
49-2 split, the index increases much more substantially to #effective = 2.08.
Essentially, Dunleavy and Boucek are making an argument for an additional
axiom. That axiom would say that not only should a measure of effective
parties vary continuously as you make small changes to vote shares (which is
what Laakso and Taagepera axiom 4 already specifies) but it should also vary
smoothly.

Figure 6.7: Figure from Dunleavy and Boucek
(2003), #2 is the Laakso and Taagepera
effective party measure.

My view is that Dunleavy and Boucek’s argument is not very convincing
because the proposed axiom is not very compelling. I do not think that an
effective party count measure needs to vary smoothly across the introduction
of an additional infinitesimal party into the system; the important thing is that
there is no discontinuity in the measure when such a tiny party is introduced
(Laakso and Taagepera axiom 3). But whether or not you think that smoothness
is an appropriate axiom in this case, it is the right kind of criticism to make
of an existing measure. Having an argument about which axioms we want to
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satisfy is a good way to specify, assess and refine a measure like this one.
Let’s return to the Laakso and Taagepera measure of the number of effective

parties in a political system from the perspective of dimensional analysis. If
you claim your measure is of an “effective number of parties”, it should not be
dimensionless. It should be in units of “number of parties”. How can we check
this? Let’s look back at the effective party formula:

#effective =
1∑<
7=1 >

2
7

(6.18)

So how do we work out the units? First question, what are the units of a
party vote share >7? If we think about how we calculate a party vote share, it is
the votes for the party divided by the total votes for all parties:

{>7} =
{votes}/{parties}∑{parties}{votes}/{parties} = 1

{parties} (6.19)

So vote shares have units of inverse parties. We can therefore rewrite the
overall formula as:

{#effective} =
1

{∑>0@B74A}
(

1
{parties}

)2 = {parties} (6.20)

which yields the conclusion that we were hoping for: that the Laakso-Taagepera
index of effective parties indeed has units of parties.

The original paper by Laakso and Taagepera does not list having correct
dimensions as a desirable criteria for their measure, nor do they ever explicitly
demonstrate that their measure does have the correct units. Nonetheless, their
measure satisfies the criteria.10 10 The way that Laakso and Taagepera define

their axioms guarantees that their measures
will have the correct units.

Similarly to Foster et al. (1984), Laakso and Taagepera (1979) suggest a whole
family of further indices that satisfy the axioms that they have specified. They
note that for any positive value of 0, one could define a defensible effective
party measure of the following form:11 11 Laakso and Taagepera note that the 0 = 0

case yields the actual number of parties.
The calculation for the 0 = 0 special case is

#effective,0 =
[∑<

7=1 >
0
7

] 1
1−0 =

[∑<
7=1 1

]
= <.

The trickier special case is 0 → 1, which
has to be solved via limiting arguments
because plugging in the value 0 = 1 yields
an indeterminant expression. This yields an
effective party number measure #effective,1 =

4F>
(
−∑<

7=1 >7 log >7
)
which had previously

been used in the literature and which has
analogies to Shannon’s H measure of entropy
which was mentioned above (Laakso and
Taagepera, 1979, p.5).

#effective,a =

[
<∑
7=1

>07

] 1
1−0

(6.21)

For 0 = 2, this yields the effective party count measure that we have looked
at above. Do all values of 0 and therefore all of the possible indices of effective
party count yield the correct units?

{
#effective,a

}
=

[{parties}∑ (
1

{parties}

)0] 1
1−0

(6.22)

=

[(
1

{parties}0−1

)] 1
1−0

(6.23)

=
[ (
{parties}1−0

) ] 1
1−0 (6.24)

= {parties} (6.25)
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Logically consistent units are not sufficient to guarantee that you have a
sensible measure, but they are necessary. There are published measures that
fail this test, including the effective party count measure proposed by Golosov
(2010). Where >1 is the vote share of the largest party, he suggests:

#G =

<∑
7=1

>7

>7 + >21 − >27
(6.26)

The denominator of this expression appears to violate dimensional analysis
because it involves adding/subtracting >7, which has units 1

{parties} to >
2
1 and >

2
7
,

which have units 1
{parties}2 . However, note that you could rewrite the above as:

#G =

<∑
7=1

>7

>21 + >7 · (1 − >7)
(6.27)

The denominator is actually ok because vote shares add up to 1 and so (1 − >7)
can be rewritten as the sum of all parties other than 7: (1 − >7) =

∑
7′≠7 >7′ .

Thus, despite initial appearances, the denominator is consistent in terms of
dimensions, as it involves adding two quantities, each of which has units of

1
{parties}2 .

However, if we analyse the units overall, we find that the measure has units
of {parties}2 rather than having units of {parties}:

#G =

<∑
7=1

>7

>21 + >7 · (1 − >7)
(6.28)

{#G} =

<∑
7=1

1
{parties}

1
{parties}2 +

1
{parties}2

(6.29)

{#G} =

<∑
7=1

{parties} (6.30)

{#G} = {parties}2 (6.31)

This is the wrong dimension for a measure of “effective parties”.

6.7 Further Examples

There are many more examples of measures that translate data into a measure
of a target concept through theoretical arguments about how the calculation
ought to proceed. Here are some examples.

Measures of Diversity/Concentration try to solve the inverse problem
to the one solved by effective party number measures. Instead of trying to
translate a set of fractions that add up to 1 into an effective number of signif-
icant blocs, they instead try to create an index of how concentrated the blocs
are. That is, they are large when there is one dominant bloc and small when
there are many small blocs instead of the other way around. There are two
commonly used such indices, Simpson’s index / Herfindahl index (Simpson,
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1949; Hirschman, 1964) and Shannon’s H index (Shannon, 1948). The Simp-
son/Herfindahl index is: � =

∑<
7=1 >

2
7
, which is the inverse of the Laakso and

Taagepera index of effective party number discussed above. Shannon’s H index
is � = −∑<

7=1 >7 log >7, is the Laakso and Taagepera index discussed above,
multiplied by −1. Indeed, Laakso and Taagepera (1979) discuss the relation-
ship of their effective party number measures to both of these indices. These
measures of concentration are used in a variety of applications, and have been
reinvented by numerous authors across many fields.

Power Indices attempt to characterise how much voting power is held by
individuals/parties under majority rule voting when those individuals/parties
have varying numbers of votes. Here, the idea is that having a given number
of votes only makes you more powerful if it means you are more likely to hold
the balance of power that determines a majority. So if you have, for example, a
situation like the 2015-17 UK Parliament, where the Conservative Party held 330
of 645 seats,12 than the simple fraction of seats that they held (a narrow majority 12 Excluding the Speaker (who does not vote)

and Sinn Féin MPs (who do not take their
seats).

of 51.2%) is a misleading representation of their power within the parliament.
Assuming party unity, whatever the Conservative Party wants will win: they
have all of the power. In contrast, after the 2017 election, the Conservative
Party only had 317 of 642 seats, falling just short of a majority with 49.4%, and
therefore necessarily reliant on other parties to form a majority, implying
a very substantial loss of voting power despite a modest loss of seats. The
Banzhaf (Penrose, 1946) and Shapley-Shubik (Shapley and Shubik, 1954) power
indices are two different ways of translating distributions of votes into indices
that characterise the potential for different blocs to be pivotal (Banzhaf) or to
be part of a governing majority (Shapley-Shubik). These are different target
conceptualizations of voting power, both of which yield calculations of voting
that are not simply proportional to the size of parties / voting blocs, but which
depend on the different coalitions that can form to get to a majority. Different
theoretical assumptions about how voting works yield different indices, and
subsequent work has continued to debate the best ones for capturing the
concept of voting power (Gelman et al., 2004)

Agreement and Disagreement are concepts that we might want to measure
for a set of voters across a series of votes. These are very commonly used in
the study of legislatures. One of the most well known of these is the Rice Index
(Rice, 1928) which aims to measure cohesion, and which is measured in terms
of the number of majority votes ;1 and the number of minority votes ;2

as (;1 −;2) /(;1 +;2). This a positive number between 0 and 1 which is
larger the more lopsided the vote is towards the majority. The highest possible
measure of cohesion is therefore achieved via unanimous votes, the lowest by
minimal majorities. Just as in the examples above, there are subsequent papers
examining how the measurement of the concept of cohesion might be refined
(Desposato, 2005). There are further approaches to measuring agreement and
disagreement that involve translating voters/legislators into an ideological
space and then examining their dispersion in that space.



114 benjamin e lauderdale

Disproportionalitymeasures aim to describe the extent to which a distri-
bution of seats in a legislature is different from the distribution of votes in the
election that determined the legislature’s composition. Proportional repre-
sentation systems minimise these differences by design, while other electoral
systems (like those used in the US and UK) may lead to large discrepencies. The
most commonly used measure is the Gallagher (1991) index, which is calculated
from squared differences between the vote shares D7 and the seat shares A7:13 13 Typically percentages rather than

shares/proportions are used, yielding a
0-100 scale rather than a 0-1 scale, but I use
shares here for consistency with the measures
discussed above.

� =

√√
1
2

<∑
7=1

(D7 − A7)2 (6.32)

This is far from the only such index however. Taagepera and Grofman (2003)
evaluate 19 possible indices for this concept! Why are there so many different
measures? In part it is because of there are many different conceptualizations
of the underlying concept. “Working on the basis of the examples I have ex-
plored here, it seems to me that the Sainte-Laguë is getting at what I would call
‘disproportionality in itself’. . . The Loosemore-Hanby and Gallagher indices,
meanwhile, appear to be closer to getting at the impact of disproportionality-
in-itself on how the country is actually governed” (Renwick, 2015).

There are many different measures that try to capture the concept of polit-
ical representation of voters by legislators. Note that this is closely related to
the idea of disproportionality, but potentially moves beyond legislators’ iden-
tities in terms of parties to other attributes like the policies they adopt and the
votes that they take. Achen (1978) outlines three different conceptualizations
of political representation—proximity, centrism, and responsiveness—each
of which implies different measurement strategies and which is more or less
sensitive to different kinds of deviations between legislators’ actions and what
voters want. Of course to even engage in this kind of assessment, one must
address further measurement problems associated with putting “legislators’ ac-
tions” and “what voters want” on comparable scales. As with the other concepts
listed above, there is a rich literature of studies proposing new measures and
making arguments for and against different conceptualizations of representa-
tion (Golder and Stramski, 2010; Matsusaka, 2015).

Even in the space of voting and elections that I have been exploring in the
above examples, there are yet more concepts scholars have aimed to measure.
These include party system polarization (Dalton, 2008), electoral competi-
tiveness (Cox et al., 2020), types of environments for multiparty government
formation (Laver and Benoit, 2015) and many others.

6.8 Conclusion

Theoretical arguments for how you ought to construct measures from indi-
cator data are powerful when they are available. The approaches discussed in
this chapter—defining axioms and then looking for simple mathematical forms
that satisfy them and dimensional analysis—can be widely used to identify
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how you can measure concepts that are already reasonably “close” to the data.
In the next chapter, we consider another case of data that is close to the

target concept that we want to measure, but where the measurement process
involves estimating a model of a particular form rather than simply specifying
a fixed relationship between the indicator data to the concept of interest.
In chapters after that, we will explore cases where there is not such clearly
relevant indicator data for the target concept.





7
Supervised Scale Measurement using Comparison Data

This chapter discusses measurement using comparison data. The measurement
problem is assessing the relative degree to which units have some concept of
interest that contributes to determining the result of the competitions. The
kind of data we will focus on are data which constitute direct comparisons
between the units. We will call the measurement problem scoring/ranking and
the type of data comparison/competition data.

It is almost impossible to avoid sports examples for this chapter, because
this is the situation and kind of data that is at the core of nearly every sports
competition. We want to know which individual/team is the best at and we
have a bunch of data on head-to-head competitions between the individu-
als/teams. The problem of assessing the underlying concept of individual/team
strength on the basis of competition data is lurking under the surface of the
Premier League table, Association of Tennis Professionals (ATP) rankings,
Fédération Internationale des Échecs (FIDE) rankings of chess players, and
many other sports examples. I will mention each of these systems below at
various points because they reflect familiar and potentially useful approaches
to solving the underlying measurement problem.

While sport is a social enterprise, and thus plausibly in the remit of this
book, competition data also arise in many other contexts. As social scientists,
sometimes we can create competitions to help solve measurement problems
where competition data do not already exist.

7.1 Wins and Losses

In many competitions, the winner is determined simply by the number of
wins accumulated by each side. There are some core assumptions required in
order for this model of “scoring” to make sense as a means of measuring which
individuals/teams/units have more of some underlying quality or concept of
interest.

Let’s call this underlying quality or concept U 8, where 8 indexes individu-
als/teams/units. Let,89 = 1 if 8 defeats their opponent 9, and 0 if 9 defeats 8.
Then the total number of wins we would expect side 8 to receive in a series of
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competitions is:

�
[
Wins8

]
=

<8∑
9=1

>
(
,89 |U 8, U9

)
If we want Wins8 to be a measure of U 8, we need it to be the case that, in

expectation, better individuals/teams/units (those with higher U 8) receive more
wins over a series of competitions. We can guarantee that �

[
Wins8

]
is increas-

ing in U 8 via the following requirements on the structure of the competitions:

1. Individuals/teams/units that have more of the concept of interest will be

more likely to succeed in the pairwise competitions: m�[,89]
mU 8

> 0 and
m�[,89]
mU9

< 0.1 1 Note that �
[
,89

]
= >(,89 = 1) . The

expected number of wins from a single
competition is just the probability of winning
that competition.

2. Every individual/team/unit has the same number of matches <8.
3. Every individual/team/unit has opponents with the same distribution of

strengths 5 (U9).

The first requirement is a reminder that we cannot measure just anything
we want from competition data. If your want to measure which individu-
als/teams/units have a higher propensity to win competitions, competition
data is obviously a sensible kind of data to use. If, however, you want to mea-
sure some other concept that is not determining the outcome (eg which indi-
viduals/teams/units are the most sportsmanlike, or something like that) this is
not a good measurement strategy for that concept.

The second assumption again seems kind of obvious. If one individ-
ual/team/unit had only had five competitions, and another had fifteen, it
would hardly be fair to assess their strength based on which one won more
matches!2 The underlying motivation for the second assumption is that all 2 One could use the proportion of, rather

than count of, wins to partially address this
issue, but that would give a winner of a single
match an insurmountable record.

individuals/teams/units should have similar oppurtunities to succeed.
The third assumption listed earlier is the most interesting, and is the one

that some competitions used in professional sport actually fail. Sports league
competitions are sometimes structured with balanced schedules so that the
competition is strictly fair. For example, the English Premier League (an exam-
ple used later in this chapter) involves every team facing every other team
twice, once at home and once away. Indeed the size of the division is es-
sentially determined by the number of matches that can be scheduled in a
season. The logic of this is that it gives all of the units/teams/individuals an
equally difficult set of competitions, because they all face the same set of other
units/teams/individuals under conditions that are as similar as possible.3 3 Most US sports leagues have league/division

structures with unbalanced schedules that
undermine direct comparisons of win totals.
The NFL has too many teams relative to
the length of the season, making balanced
schedules impossible, and necessitating a
convoluted playoff qualification structure to
make the competitation vaguely fair.

If all three of these conditions are met, then the win count will measure
the relative strength of the different individuals/teams/units versus one an-
other. Obviously we cannot learn about the relative strength of these indi-
viduals/teams/units versus other units that were not in the competition. This
standard of strict fairness of the schedule is difficult to meet without small
leagues and long seasons.
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7.1.1 Adding Draws

We can use this logic to think about how to handle cases where there are
draws/ties in individual match-ups. The obvious way to do this is to count
draws as intermediate between a win and a loss. While you might do this by
treating them as half a win for each side, in practice it is more common to
define a point system so no one has to cope with fractions. If you redefine,89

above as the number of points received instead of the number of wins, the
listed conditions still supply a fair competition and allow you to use the points
as a measure of the quality of the teams. At least if, in expectation, increasing
the quality U 8 increases the number of points that 8 receives and increasing the
quality of their opposition U9 decreases the number of points that 8 receives.

The obvious way to achieve this is to say that a win is worth 2 points, a draw
is worth 1 point, and a loss is worth 0 points, and then count these up at the
end of the competition. From a measurement perspective, the logic of counting
the draw as halfway between a win and a loss seems very sensible because it
ensures that the same number of points are awarded for each match, and so if
all the units have the same number of matches, the total number of points to be
awarded is fixed in advance and does not depend on the results.

If you know anything about sports leagues with point systems, you know
that they often do not count a draw as intermediate between a win and a loss.
In domestic and international football competitions, it is standard to award
3 points for a win, 1 point for a draw, and 0 points for a loss. This means that
3 points are awarded in total for matches which end in a win for one of the
teams, and only 2 points are awarded for those which end in a draw, 1 for
each side. Other leagues have even more convoluted point systems. In the
National Hockey League in the US and Canada, two points are awarded for a
win, one point for losing in overtime or in a shootout, and zero points for a
loss in regulation time. These systems make little sense from the perspective
of measuring the quality of teams. They are designed to incentivise certain
strategies and disincentivise others. The football system encourages teams to
avoid draws. The hockey system (bizarrely) encourages teams to have draws in
regular time and then to go for victory in overtime when they have nothing to
lose.

These systems are still fair with respect to the comparison of teams across
the season, in that all teams face the same incentives in every match, and have
the same number of oppurtunities to gain points. They also do not undermine
our ability to use points as a measure of team quality, although the incentives
around encouraging/avoiding draws arguably change the definition of team
quality.

This kind of “fairness in distribution” strategy does not work well for all
ranking tasks. Consider the problem of determining who are the strongest
tennis or chess players. These are individual sports where there are too many
individuals to have everyone play everyone else regularly. If you did select
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opponents randomly from a very large pool, most of the competitions would
be so lopsided as to be uninteresting as competitions. Tennis competitions are
designed to make the strongest individuals play each other towards the end
of knock-out tournaments, because it is more interesting for the spectators
to watch that way. But then naively using win counts would be a bad way
of assessing which tennis players are stronger. How can we measure which
individuals/teams/units are strongest if we observe a very unbalanced set of
competitions?

7.2 Rating Transfer Systems (ELO)

Chess ratings use a rating system called Elo, named after their inventor Ár-
pád Imre Élő, who was a physicist and strong amateur chess player (born in
Hungary in 1903, emigrated to the US in 1913).

The core idea of this kind of system is that everyone starts with an endow-
ment of points, which is your rating. Whenever you face an opponent in a
match, depending on the pre-match ratings and the result of the match, some
number of points are transfered between the two opponents. You gain more
points for a better result, but the amount of points that you gain is larger if
your pre-existing rating was worse relative to your opponent. This means that
you can rise in the ratings rapidly by defeating highly rated opponents, but
a highly ranked individual cannot gain much rating by repeatedly defeating
weak competition. Two evenly rated opponents will trade points equally: if
two chess grandmasters with ratings of 2400 face one another, each will stand
to gain the same number of points from a victory.

One advantage of this type of system is that decentralised calculation is
possible, so long as everyone is honest. If we both know our rankings going
into a match with one another, we can figure out our rankings after the match,
and no one needs to keep track of all the matches centrally. This means that the
system works even with very large numbers of competitors.

There are some well-known disadvantages to schemes like this. They are
sensitive to grade inflation over time as new entrants introduce more points
to be redistributed. For this reason, initial ratings for new players are tricky
to specify. If you trust everyone, you only need to know the current state of
the system, but you need a full, trusted history of time-stamped matches to
actually recreate the current rankings.4 Finally, you have to make a judgement 4 This is a rare problem for which the

solution is actually is a blockchain.call in setting up the system regarding how many points will be at stake in
each match, as this determines how sensitive the system is to what has hap-
pened very recently versus long-run performance. If too many points are at
stake in each match, ratings will be excessively volatile; if too few points are at
stake in each match, ratings will take a very long time to reflect changes in the
performance of the competitors.

We are not going to go into any detail on such systems, as they are rarely
used for social science applications, but they begin to develop the key intuition
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behind the models we will look at for the rest of the chapter. That intuition
is that not all wins are equally impressive. If you want to accurately measure
strength from data that involve an imbalanced schedule of competitions, you
need to explicitly model how results wins/losses/draws vary depending on the
quantity that you are interested in measuring.

7.3 Bradley-Terry Models

We are now going to embed this logic in a statistical model for the outcome
of competitions. We want to connect the unobserved quantity that we are
interested in measuring (“strength” or “propensity to win”) to the observed data
(wins, losses and draws). The class of models that we will be using was first
described by Bradley and Terry (1952), and are extremely simple. We assume
that each team/individual/unit 8 has a strength in competition that is described
by a single parameter U 8.

There are several ways to parameterise such a model, but we are going to
focus on one with an underlying link to logistic regression models.5 We then 5 The original statement of the model

was linear, rather than logistic, where
>( 8 defeats 8′) =

U 8

U 8+U 8′
, for positive U.

Alternatively, in the spirit of linear prob-
ability models for binary data, one can fit
>( 8 defeats 8′) = U0 + U 8 − U 8′ , with U0
either set to 0.5 or estimated to account
for asymmetries like home side advantage.
Analogously to linear probability models,
this potentially yields invalid predictions for
>( 8 defeats 8′) that are outside the range from
0 to 1 if the variation in the strength of the
different 8 is large. But where the variation
in the strength of 8 is small, this linear model
has the advantage of yielding U values that
are easily interpretable as differences in
probability of winning.

assume that the log-odds of the competition results are determined by the
difference between the parameters for the two sides:

:=6

(
>( 8 defeats 8′)
>( 8′ defeats 8)

)
= U 8 − U 8′ (7.1)

Figure 7.1 illustrates the implications of this functional form. The more
positive the difference between U 8 and U 8′ , the greater the probability that 8
wins. The more negative the difference, the greater the probability than 8′ wins.
If U 8 = U 8′ , both 8 and 8′ are equally likely to win.
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Figure 7.1: Probability that j defeats j’ under a
logistic Bradley-Terry Model.

The Bradley-Terry model is so simple, in fact, that it is just a special case
of a logistic regression model. In order to fit a Bradley-Terry model using a
logistic regression, we define . = 1 to correspond to a victory of 8 over 8′,
and . = 0 to correspond to a victory of 8′ over 8. We then define a set of
indicator variables, one for each individual/team/unit, which equal 1 when that
individual/team/unit is 8 and −1 when that individual/team/unit is 8′.

In order to be able to fit this logistic regression model, we need to exclude
one of the units, so that we are estimating the strength of all other individu-
als/teams/units relative to that one. The reason for this is that, if you look at
Equation 7.1, we can add any constant number to all the U 8 parameters without
changing any of the model predictions. This means the absolute levels of the
U 8 parameters are arbitrary, only the differences between them matter. This is
an example of a scale which is interval-level but not a ratio-level: numerical
differences are meaningful, but the zero point is not.

In addition to excluding one of the units, one can also exclude or include
the logistic regression intercept. In sports competitions, there is often a “home”
side and an “away” side to the competition. In many sports there is a home
side advantage, where there is a clear pattern that home sides are more likely
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to win. If you include the intercept in the logistic regression, and always code
the “home” side as 8 and the away side as 8′, then the intercept will estimate the
extent of home side advantage. If you exclude the intercept, you are assuming
there is no home side advantage.

The fact that the Bradley-Terry model is just a logistic regression with
dummy variables for each team, coded positive or negative to match the coding
of the dependent variable, immediately suggests a variety of extensions to the
basic model. If we want a version of the model that can cope with draws, we
can use an ordinal logistic regression model:6 6 This extension was proposed by Rao

and Kupper (1967) but neither the original
Bradley-Terry model nor this extension
are explicitly related to binary and ordinal
logistic regression models by their original
authors because they predate the general
statements of the binary logistic regression
(Cox, 1969) and ordinal logistic regression
(McCullagh, 1980) models.

:=6

(
>( 8 defeats or draws8′)

>( 8′ defeats 8)

)
= W0 + U 8 − U 8′ (7.2)

:=6

(
>( 8 defeats 8′)

>( 8′ defeats or draws8)

)
= W1 + U 8 − U 8′ (7.3)

If we want to include covariates, we can do that by adding them to the
binary/ordinal logistic regression, keeping in mind that we need to code them
in a way that makes sense given how we have defined the outcome. Following
on the point about home side advantage above, we can include this in the
model in two different ways. First, as suggested above, we could simply define
the dependent variable as the home side winning, coding the indicator for
the home side as +1 and the indicator for the away side as −1. In that case,
the overall intercept for the logistic regression model becomes the home side
advantage parameter, because it corresponds to the log-odds of the home side
winning when the U parameters for both sides are equal:

:=6

(
>(home defeats away)
>(away defeats home)

)
= V03D0<B064 + Uhome − Uaway (7.4)

Alternatively, we could exclude the intercept, and include a +1/-1 variable
home8 that takes on the value +1 if 8 is at home and -1 if 8′ is at home. This
approach would be useful if some competitions are on neutral ground, so that
we could instead define a three-level variable that is +1 if 8 is home, 0 if on
neutral ground, and −1 if 8′ is at home.

:=6

(
>( 8 defeats 8′)
>( 8′ defeats 8)

)
= U 8 − U 8′ + V03D0<B064 · home8 (7.5)

This approach works for other covariates as well, we just need to remember
to use +1/-1 or +1/0/-1 codings rather than +1/0 codings, so that the model
yields the same predictions regardless of which side you chose to list as 8 and
which you chose to list as 8′. For example, imagine you wanted to estimate
whether sports teams were at a disadvantage if they had played more recently
than than the other side. You might code a variable that was +1 if 8 had played
more recently than 8′, 0 if they had played equally recently, and −1 if 8′ had
played more recently than 8. Then, the coefficient Vshort rest on that variable
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would indicate the advantage/disadvantage of being on shorter rest than the
other side.

7.4 Application - 2018-19 English Premier League Season

The English Premier League consists of 20 teams playing home and away
against every other team in the league, for a total of 38 matches per team. The
Premier League champion Manchester City secured 98 points on the basis of
32 wins, 2 draws and 4 losses, while Liverpool came second on 30 wins, 7 draws
and 1 loss. Note that the 3-1-0 point win-draw-loss system was pivotal, on a
2-1-0 points system Liverpool would have won the league by 67 to 66.
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Huddersfield Town Figure 7.2: Bradley-Terry model estimates for

Premier League 2018-19 season (relative to
Huddersfield). Right: Hypothesis test results
for pairwise comparisons of teams, where the
four shades from white to black correspond
to > > 0.1, 0.1 > > > 0.05, 0.05 > > > 0.01,
and 0.01 > >, respectively.

If we estimate an ordinal Bradley-Terry model on these data (which have
many ties/draws) with estimated home side advantage, we get the estimates
shown in the left panel of Figure 7.2. Note that all the estimates, and also the
confidence intervals, are relative to the omitted side, which is the lowest rank-
ing Huddersfield Town. Because the confidence intervals are relative to the
omitted side, they are not very helpful for determining the pairwise com-
parisons of other teams, so the right panel of Figure 7.2 shows the results of
pairwise hypothesis tests for whether teams have equal strength parameters U.

The top two sides, Manchester City and Liverpool are indistinguishable
from one another, and are significantly stronger than Chelsea in third. The
estimate for Chelsea, which came third, is not significantly different from the
teams ranking first through eighth (Everton) at the 0.1 significance level or the
tenth (Leicester City) at the 0.05 level. Leicester City, situated in mid-table, is
not significantly different from the teams ranked third to seventeenth at the
0.05 level. In a 38 match season, there is a lot of room for good or bad fortune
to intervene, we cannot be very confident about which teams were really better
or worse.7 7 By “really” better or worse, I mean which

teams be more successful in a hypothetical
infinite season in which the teams each
played each other an infinite number of
times, but nothing else about the teams
changed.
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Figure 7.3: Bradley-Terry estimates as a
function of point totals.

As the plot on the right of the figure shows, with a fully balanced schedule,
the point totals from the 3-1-0 system are very highly correlated with the
Bradley-Terry estimates. The correlation between the two measures is 0.996.
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If you have a perfectly balanced schedule of competitions, each side facing
each other side the same number of times, point systems work very well.
Nonetheless, there are advantages to fitting a measurement model like the
Bradley-Terry model. First, we get the confidence intervals, which are relevant
if you want to think about how confident we should be that the best team
won the Premier League, or questions like that. Second, we can calculate
predictions. Given their performance over the season, what are our predicted
probabilities that Manchester City defeats Liverpool head-to-head?

To calculate this, we need to numerical values of the coefficients from the
model. The key pieces are the values of U for Manchester City and for Liver-
pool, estimated at 4.115 and 3.876 respectively, plus the intercepts for each of the
two model equations, which are estimated as -0.909 for Away Win versus Draw
or Home Win and 0.142 for Away Win or Draw versus Home Win. Therefore,
if we want to calculate the predicted probabilities, we need to solve the ordinal
logistic regression equations:

:=6

(
>(" defeats or draws !)

>(! defeats ")

)
= −0.909 + 4.115 − 3.876 (7.6)

:=6

(
>(" defeats !)

>(! defeats or draws ")

)
= 0.142 + 4.115 − 3.876 (7.7)

Note that, because I fit the model with the home side as 8 and the away side
as 8′, this estimates the probabilities for a match held in Manchester. If we want
to calculate the probabilities for a match held in Liverpool, we have to swap the
sides, which does matter because the two intercepts are not symmetric around
0:

:=6

(
>(! defeats or draws ")

>(" defeats !)

)
= −0.909 + 3.876 − 4.115 (7.8)

:=6

(
>(! defeats ")

>(" defeats or draws !)

)
= 0.142 + 3.876 − 4.115 (7.9)

In the former case, where Manchester City is at home, the probabilities
work out to 0.52 for a Manchester City victory, 0.24 for a draw, and 0.24 for a
Liverpool victory. In the latter case, where Liverpool is at home, the probabil-
ities work out to 0.34 for a Manchester City victory, 0.26 for a draw, and 0.41
for a Liverpool victory. You can see from this that home side advantage in the
Premier League is substantial.8 8 We are estimating a general home side

advantage, not one that is specific to partic-
ular teams. You could do the latter either by
having intercepts that vary for each team in
the model, or by estimating different strength
parameters for each team depending on
whether they are at home or away, essentially
treating them as two distinct teams.

Alternatively, we can make some kind of statement about just how much
better the best teams are than the worst teams. The predicted probability of
Manchester City defeating Huddersfield Town, in a match where Manchester
City plays at home, is 0.98. Moving the match to Huddersfield helps very lit-
tle, Manchester City is still predicted to win with probability 0.96. The gulf
between the top and bottom of the Premier League in 2018-19 was vast.

It is obvious how we talk about the units of wins or of points, but what are
the units of the Bradley-Terry estimates? The straightforward answer is the
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correct one. The coefficients of a binary or ordinal logistic regression model
are log odds-ratios, so the Bradley-Terry estimates are log-odds ratios of better
results versus worse results. When you fit this model, you are deciding to
measure the strength of each side according to their log-odds of getting better,
as opposed to worse, outcomes in competition with one another. You may not
love log-odds as a unit, but they are a good unit of account for competition
data for all the same reasons they are a good basis for a limited dependent
variable model with binary or ordered categorical outcomes. They have a
relatively simple mathematical form and they translate in a straightforward
way into valid predictions. The number of wins or the number of points may
have an even greater virtue of simplicity, but they do not tell you anything
quantitative about who is likely to win the next match.

7.5 Application - 2019-20 English Premier League Season

The English Premier League, like nearly all football leagues, uses a balanced
schedule of competition. However, the 2019-20 season was interrupted by a
pandemic caused by the novel coronavirus SARS-CoV-2. This stopped all com-
petition on 13 March 2020, with 288 of 380 scheduled matches completed (76%).
All teams had completed 28 or 29 of their scheduled 38 matches, but this meant
that some teams had faced weaker competition than others, simply because
more of their matches against stronger teams remained uncompleted. For a
while, it was unclear whether the season could be finished, and therefore which
teams should be relegated to a lower league (the bottom three) or be able to
compete in the European Champions League (the top four) in the next sea-
son? Given that the standings as of the suspension of the season did not even
have all sides with the same number of matches, let alone the same strength
of schedule, surely this would not be a fair basis on which to allocate the very
substantial financial rewards of staying in the Premier League as opposed to
being relegated, or entering the Champions League as opposed to not? One
commentator despaired:

“What precise form of points per game you use is a really interesting argument
because once you accept that a simple points per game might not quite be ade-
quate, and you want to start weighting it, and you say that they have six home
games left and only four away and maybe we should do it home points and away
points, why stop there? Why is that the dividing line? Why don’t you move one
further down the line and say well actually they still have to play all of the top six
whereas this team had none of the top six left to play. And that then gets incredi-
bly complex and of course you cannot at this stage make a fair assessment of that
unless you get some boffins from North Korea who have no idea that the Premier
League even exists and lock them away in a biosecure environment and you say
to them ‘What is the fairest way of doing this?’ and they come out with the equiv-
alent of the Duckworth-Lewis charts and say this is the way we do it, and whack
it in the algorithm. But the problem is Duckworth-Lewis was invented looking
at past performance and calculating probabilities but there was not a game going
on at the time, so you didn’t have an immediate knowledge of what the impact

https://en.wikipedia.org/wiki/Duckworth\T1\textendash Lewis\T1\textendash Stern_method
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would be. So it’s an almost impossible thing.” Jonathan Wilson, Guardian Football
Weekly Podcast, Thursday 21 May 2020.

The Bradley-Terry model is one such algorithm. As we specified it in the
preceding section, and applied it to the 2018-19 season, we can also apply it
to the partial results of the 2019-20 season up to the halt of competition due
to the pandemic. Figure 7.4 shows the Bradley-Terry estimates in the same
way as before. While we can be pretty confident that Liverpool was by some
distance the strongest team in 2019-20, the shortened season leaves a great deal
of uncertainty about the relative rankings of every other team in the Premier
League.
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Because the Bradley-Terry model is a probability model that relates param-
eters U to the observable outcomes of matches, it can make predictions about
the results of the unplayed matches. For each of the unplayed matches, we
can construct predicted probabilities from the model, in the usual way that
we do so for (ordinal) logistic regression models. From this, we can construct
expected end of season point totals for every team.

For example, one of the next matches that was to be played after the pan-
demic halted the season on 9 March 2020 was between Manchester City (home)
and Arsenal (away) on 11 March 2020. What does the model say about the likely
outcome of that match? The predicted probabilities for that match are 65%
chance of a Manchester City win, 22% chance of a draw, and 13% of an Arse-
nal win. Given these probabilities, we can calculated the expected points that
each team would have gained from this match, which is just 3 × >(,7<) + 1 ×
>(�@0E). These work out to be 2.2 points for Manchester City and 0.6 points
for Arsenal.

If we tally up the total points that all the teams had secured from the
matches they had played at the time the season was suspended with their
expected points for the remaining matches, we get the following league table:
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Team Matches Completed Points Expected Points

Liverpool 29 82 107.3
Manchester City 28 57 77.6
Leicester City 29 53 70.2
Chelsea 29 48 62.2
Manchester United 29 45 60.9
Wolverhampton 29 43 58.2
Sheffield United 28 43 57.9
Tottenham Hotspur 29 41 54.4
Arsenal 28 40 53.4
Burnley 29 39 50.4
Crystal Palace 29 39 49.4
Everton 29 37 48.3
Newcastle 29 35 46.1
Southampton 29 34 44.6
Brighton and Hove Albion 29 29 36.9
West Ham United 29 27 36.4
Watford 29 27 36.1
AFC Bournemouth 29 27 34.0
Aston Villa 28 25 32.3
Norwich City 29 21 28.6

The incomplete schedule turned out not to be very consequential for rank-
ing the different Premier League teams. The expected order of the teams at the
end of the season matched the current point totals. However, the model did
break some ties between teams with the same number of points. Most conse-
quentially, at the time that the season was suspended, AFC Bournemouth, Wat-
ford and West Ham United were tied for sixteenth to eighteenth place in the
league with 27 points and 29 matches completed. Since the bottom three teams
are relegated from the league under normal circumstances, which of these
teams is placed eighteenth is particularly important. Based on the Bradley-
Terry model at the time that the season was halted, AFC Bournemouth was
the side that we should expect to secure the fewest points in their remaining
matches, and thus to be relegated to a lower league.

7.5.1 Measurement and Predictive Uncertainty

While the calculations for the expected point totals for all teams give a single
prediction, there was of course substantial uncertainty in how the end of the
season would have actually played out in the absence of the pandemic. There
are two quantifiable sources of uncertainty that we need to think about in cases
like this where we want to use measurements to make predictions about future
outcomes.
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First, there is predictive uncertainty. Individual matches yield specific results:
either one side gets 3 points and the other 0, or both get 1 point. Even if the
estimates of the probabilities of these results are sound, football matches can go
one way or another, and a side can have a good run in their remaining 9 or 10
matches relative to expectations, simply through good luck. This is quantifiable
uncertainty, as we can simulate the results of each match, with the predicted
probabilities, and see what the distribution of results for the rest of the season
looks like if you simulate match outcomes from those probabilities.

Second, there is measurement uncertainty. The estimates of the relative
strengths of teams are measured with substantial uncertainty. Some of the
teams are actually stronger and some are weaker than the point estimates of
U imply. Whereas predictive uncertainty reflects the potential for teams to be
lucky or unlucky in future matches, measurement uncertainty reflects the fact
that some teams will have been lucky or unlucky in the completed matches
that we used to estimate the model. Again, this is quantifiable uncertainty,
because we have fit a model that tells us the uncertainty in all of the model
parameters. As discussed below, there are ways to incorporate this uncertainty
in simulations of the results for the rest of the season.

Bradley−Terry Predicted Point Total
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Figure 7.5: Predictions for final point totals
of Premier League 2019-20 season based
on Bradley-Terry model estimates. The
thick error bars include only predictive
uncertainty, the thin error bars include both
measurement and predictive uncertainty. The
final outcome of the season after restart is
depicted with a purple vertical line for each
team.

In addition to these quantifiable sources of uncertainty about how the
season would actually play out, there are unquantifiable sources of uncertainty
related to the adequacy of the Bradley-Terry model we are using. Remember,
this is a very simple model with strong simplifying assumptions. All teams have
a single strength parameter that applies throughout the season, neither getting
stronger nor weaker, even if they reach the end of the season with little to
play for. All teams have the same home side advantage. These assumptions are
very likely wrong, although perhaps not wrong enough to matter very much
at all. Given the limited data in a single season, we cannot do much to relax
them, but if one was embarking on a broader analysis of football results, one
might wish to assess the evidence regarding how accurate these simplifying
assumptions are across many seasons. We will set aside these concerns here,
but it is important to acknowledge that they exist.

In order to the assess the magnitude of predictive uncertainty we can sim-
ulate the remainder of the season a large number of times, using the predicted
probabilities calculated from the ordinal logistic regression coefficient point
estimates. In order to assess the magnitude of predictive plusmeasurement
uncertainty, we replace the coefficient point estimates with draws from a
multivariate normal distribution with mean equal to those point estimates,
and variance matrix equal to the estimated variance-covariance matrix of the
model coefficients (King et al., 2000). The square roots of the diagonal elements
of this variance-covariance matrix are the standard errors of the regression
coefficients.

Figure 7.5 shows 95% intervals around the predicted point totals for each
Premier League side, based on simulating the remaining matches of the 2019-
20 season after the suspension of play on 13 March. The degree of predictive
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uncertainty is shaped by the number of matches remaining and how well the
model predicts match outcomes; the estimation uncertainty is mostly shaped
by the number of matches already completed. Nonetheless, incorporating
measurement uncertainty (the thin error bars) in addition to the predictive
uncertainty only slightly increases the width of the intervals, even in this case
where we have only a modest number of past matches for each side (28 or 29).
The major source of uncertainty about how the season would actually play out
is that individual matches have uncertain outcomes, and teams might be lucky
or unlucky in how those matches turn out.

In the end, the Premier League season was successfully concluded, in empty
stadiums, between 17 June and 26 July 2020. The final point totals are included
as vertical tick marks in Figure 7.5. The final totals are mostly within the
95% intervals obtained when the season was paused. We would expect one
in twenty to fall outside their 95% intervals, and in fact there are three: Liv-
erpool, Norwich and Leicester. Liverpool and Norwich had nothing to play
for at the end of the season, the former because they had secured the league
title, the latter relegation. As noted above, this kind of change in motivation
is not something the model is designed to capture, although in principle with
data from many seasons it would be possible to estimate the consequences of
playing out the end of the season in such circumstances.

7.6 Designing Competition Data Collections for Measurement

Ok, enough about sport. Is this kind of model useful for social science? Yes,
because sometimes the best way to measure an unobserved quantity is to setup
comparisons that are responsive to that quantity. Let’s say you want to figure
out which political parties are further to the right and which are further to the
left, across Europe. One thing you might do is ask some experts on European
political parties to rank each party position as 0, 1, 2, 3, etc on a 0 - 10 left-right
scale. That is a really difficult question to answer, and to answer consistently
across countries.

What if we asked for pairwise comparison instead? Obviously it is a much
easier question to answer whether the UK Labour party is to the left of the UK
Conservative party than to put these parties on a vague 10 point scale. But it
also might be easier to answer the question of whether the UK Labour party is
to the left of the Irish Labour party or the German Social Democrats or other
relevant comparisons of parties cross-nationally. Those are not trivial assess-
ments, but they are a better test of whether it is possible to make meaningful
cross-national comparisons of this type at all. If your experts cannot make
these kinds of pairwise comparisons, their 0-10 scale scores are definitely use-
less. In contrast, experts might be able to make meaningful binary comparisons
without being able to generate valid 0-10 scores. Making pairwise comparisons
is a less demanding task.

There are other applications where asking some set of respondents to make

https://www.chesdata.eu/
https://www.chesdata.eu/
https://www.chesdata.eu/
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pairwise comparisons is useful. Loewen et al. (2012) want to assess which argu-
ments are strongest in a Canadian political referendum. So they use a Bradley-
Terry model to analyse data from a general population survey where respon-
dents are given a comparison between two arguments randomly selected from
a larger pool of possible arguments, and asked to indicate which argument
is stronger. Again, you could ask people to directly assess the strength of the
arguments, but it is probably easier to have them make pairwise comparisons
between arguments than to evaluate single arguments against some abstract
scale of argument quality.

Zucco Jr et al. (2019) use a Bradley-Terry model to assess which ministerial
roles in government are valued more highly in Brazil. Rather than trying to get
direct assessments of 37 different ministerial roles, they surveyed legislators
and other experts on Brazilian politics, giving each randomly generated pair-
wise comparisons between ministerial roles, asking respondents to “choose the
ministry they thought a typical politician would prefer to obtain” for his/her
party in a coalition negotiation. They estimate, very plausibly, that the Finance,
Health and Education ministries are all near the top, while Tourism, Culture,
Sports and Fisheries are near the bottom. They also note that this kind of data
collection is both engaging and quick to complete for respondents:

Survey instruments with pairwise comparisons are impressively user-friendly.
Several ABCP colleagues reported to us that the survey was “fun,” which may
explain why 273 of the 278 participants opted to continue on past the first eight
pairwise comparisons. Median time to completion for the entire expert survey
was just over 4 min.

This example highlights that pairwise comparisons are useful for extracting
quantititive measures in areas where there is as yet unquantified “common
knowledge” held by some relevant population of people who you can survey.
This could include which legislators are more or less competent, which Lon-
don tube stations are more or less pleasant to travel through, and many other
applications. In any case where you are contemplating asking people to rate a
set of units (eg on 0-5 or 0-10 scales) it is worth considering whether it would
be better to have them make pairwise comparisons of pairs of units instead.

Hopkins and Noel (2021) use pairwise evaluations of US Senators to estimate
Senator ideology as perceived by surveyed political activists. For each ran-
domly selected pair of Senators, they asked “Which of these two politicians is
more liberal?” or “Which of these two politicians is more conservative?”9 They 9 The form of the question was randomised,

to ensure that there was not an asymmetry
between perceptions of liberalism and
conservatism. The data are then recoded
so that the “winners” of the comparisons
are consistently one ideological label or
the other, regardless of which question was
asked.

then ran these pairwise comparisons through a Bradley-Terry model to gener-
ate summaries of activist perceptions. Figure 7.6 shows a comparison of these
scores to another set of ideology scores for US Senators, which is a summary
measure of legislative votes taken in Congress. We will cover the methods for
generating measures from such data later in Chapters 12 and 17.

While these two different measurement strategies do not recover exactly the
same relative ideological positions—if they did, all the points would be on the
diagonal line—they are highly correlated both across and within party. There



pragmatic social measurement 131

Figure 7.6: Comparison of Bradley-
Terry estimates of US Senator ideology
based on political activist perceptions
(x-axis) and a summary of US Senator
voting behaviour in Congress (y-axis).
https://fivethirtyeight.com/features/
how-trump-has-redefined-conservatism/

https://fivethirtyeight.com/features/how-trump-has-redefined-conservatism/
https://fivethirtyeight.com/features/how-trump-has-redefined-conservatism/
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are nonetheless some differences which are interesting. While Democratic and
Republican Senators overlap in ideology according to activists’ evaluation—
some Republicans (eg Susan Collins) are to the left of some Democrats (eg
Joe Manchin)—by legislative voting there is no overlap. In their article, Hop-
kins and Noel (2021) discuss what we learn from some of the Senators whose
“activist ideology score” and their voting behaviour score (“DW-Nominate ide-
ology score”) differ substantially. They note that these cases where the fact that
these measurements are summarising different kinds of data really matters:
some Senators are perceived in public differently from how they vote. Some-
times these discrepencies are likely to be intentional on the part of the Senator,
sometimes not.

7.6.1 How much data do you need?

First and foremost, this depends on how “big” the differences between units
are: if the “stronger” units that you are studying almost always “win”, across
the range of units in your data, you do not need as much data as if the stronger
units only win somewhat more often. Second, you should think in terms of a
number of comparisons involving each unit of interest. You might need 25 or 50
or 100 or many hundreds comparisons involving each unit, depending on how
big the differences between units are. Thus, larger sets of units require larger
sets of comparisons. Note that while this is fairly demanding in terms of data,
the good news is that it is proportional to the number of units < and not to the
number of possible pairwise comparisons <2 − <, so you are not completely out
of luck in medium data sets. Nonetheless, this is a measurement strategy that
works best with small to medium numbers of units that you want to put on a
scale relative to one another. Strategies for extending the pairwise comparison
idea to larger data sets where it is not feasible to conduct enough pairwise
comparisons involving each unit that you want to measure are discussed in
Chapter 9.

7.6.2 How should the competitions be structured?

Balanced competitions are those where you observe all pairwise comparisons
the same number of times. If there are too many possible pairwise compar-
isons, a balanced competition can be approximated by selecting pairs of units
at random. In cases where you can just barely generate enough comparisons
for the number of units, it can make sense to do adaptive testing to avoid re-
running the competitions where you already know the result. You do not learn
anything from having Serena Williams (2015 edition) play someone ranked
1000th in the world, because Williams will always win. Similarly, you don’t
learn anything from having your expert/crowd coder make really obvious
comparisons—is the United Kingdom or the Democratic People’s Republic of
Korea more democratic?—except maybe whether they are paying attention.10 10 Owing to weak labelling standards for

countries, the country with “Kingdom” in the
name is more democratic than the country
with “Democratic” in its name.

You cannot push the adaptive testing idea too far though, as you do need all
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the units you want to compare to be connected by competitions. You cannot
use a Bradley-Terry model to assess the relative strengths of two groups of
units that never face one another (eg two different sports leagues). And if
you have only a few “bridging observations” between two groups, you will
be very uncertain about their relative strengths. The good news is that the
estimation will automatically account for this, you will see the problem in the
standard errors (or, in the extreme case of completely disjoint competitions, the
regression will fail to fit or will drop coefficients). This is one reason that using
a measurement model is attractive: it tells you how much you learned from the
data.

7.6.3 How can I be sure I am measuring the right thing?

If you are setting up competitions to solve a measurement problem (as op-
posed to working with competition data that already exist) you need to make
sure that people are answering the question that you intended them to answer.
This requires clarity, but it also requires relevant knowledge or competence.
It might be that you expect them to already have that knowledge, as in the ex-
ample of Brazilian legislators indicating which ministries they would prefer
(Zucco Jr et al., 2019). It might be instead that you expect them to make an eval-
uation that you give to them, as in the case of comparing Canadian referendum
arguments (Loewen et al., 2012). If you asked members of the general public
which ministries were most attractive to legislators, many of them would have
no idea. A wide variety of further survey design considerations will apply in
specific applications, including limitations on how much information you can
expect people to process and social desirability biases.

7.6.4 The latent variable that you just made up is not a real thing in the world

The Bradley-Terry model is our first example of the broader class of “latent
variable models”. We will see many more. It is a very simple latent variable
model that is easy to understand, which makes it a good basis for talking about
the most common conceptual error that people make when interpreting latent
variable models.

What makes the Bradley-Terry model a latent variable model is that we
have hypothesized a variable—call it “quality” or “strength” or “propensity to
win competitions”—that describes each individual/team/unit. That variable is
not observable directly; it is latent. But we assume that it predicts the wins and
losses (and draws) that we do observe.

Note that it is very easy to imagine that this is meant to be a representa-
tional model. That is, that there is a real thing in the world that we are calling
the “strength” or “quality” of the individual/team/unit, and that thing is de-
termining the outcomes. If we are going to use these estimates for prediction
of future competitions, it must be, right? If we are claiming to measure some-
thing, that something must be a real thing that already exists, right? Many
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people have a strong intuition that the answer to these questions must be yes,
but the answer to both is no.

Imagining that the latent variable model that you specified represents real
causal attributes rather than merely approximating them is one of the most
frequent and damaging classes of errors that people make when working with
latent variable models. The Bradley-Terry model is a pragmaticmeasurement
model, it should not be understood as representativemeasurement.

The Bradley-Terry model, if interpreted representationally, is an implausible
monocausal11 story for the outcomes of competitions. In some sense, the model 11 In tennis, Rafael Nadal and Roger Federer

spent years fighting close matches on hard
courts while Federer almost always won on
grass courts and Nadal always won on clay
courts. Why did this happen? Because tennis
involves a multidimensional skillset (serve,
forehand, backhand, pace, spin, mobility, etc)
and some of those skills are more valuable on
some court surfaces than others.

already acknowledges this because it is probabilistic: the “stronger” unit does
not always win the competition. So the model only attempts to measure one
“factor”, but acknowledges that other things must also matter. We will see this
repeatedly in the coming chapters as we explore further latent variable models:
we will often try to measure one (or two or three) “factors” that might predict
an outcome, and then treat everything else as noise. It is nonetheless important
to recognise that just because you hypothesize a monocausal explanation for
something, that does not make it true. Even if your model predicts “pretty
well”, that still does not make it true.

But if these are not representative models, in what sense have we “mea-
sured” something? What use is this very simplified and stylized description of
the data? The answer is that it is useful precisely because it is simplified and
stylized. If you follow sports, you will know that it is very natural to talk about
and assess which sides are stronger, even though you know that strength in
competition consists of much more complicated details. If you think about
other comparisons we might make, they are similarly reductive. Imagine the
last two restaurants you have been to. Which one is a better restaurant? That
is a question that you might ask, and might be answered consistently or incon-
sistently over time by one person or across people, but it is clearly reducing a
number of underlying attributes into a simple comparison.

Models like the Bradley-Terry model are models for pragmatic measure-
ment. The estimates from these model are simple summaries of features of the
world (the outcomes of competitions) but they do not represent something that
exists already in the world. Measuring the relative “strength” of Manchester
City and Liverpool football clubs in a given year is a pragmatic measurement
task. In contrast, measuring the number of people who show up to a match is
a representational measurement task. The former is aiming to simplify a great
deal of complexity down to a couple of numbers; the latter is aiming to provide
numerical representation of something that exists whether you measure it or
not. These are both measurement tasks, and we can do them more or less well,
but they have distinctive characteristics as problems to solve. It is important to
be clear about which one you are doing.
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7.6.5 Common sources of measurement error

Finally, let us think about measurement error in the context of models for
competition data. This is going to be a recurring theme in the coming chapters,
using the ideas that we developed in Chapter 5.

First, let’s think about the variance of Bradley-Terry estimates. In this con-
text, variance reflects how much our estimates would vary around whatever
value we would measure, with the model we are using, if we were able to
run an infinite number of competitions. High measurement variance comes
from having insufficient data. If we do not have enough data on individu-
als/teams/units, we will recover imprecise estimates. Recall that high impre-
cision/variance means that if we went out and ran new competitions, and
nothing about the competing units had changed, our measurement might still
change a lot.

What does bias mean in this context? Bias is how the measurements tend to
deviate from the thing we actually wanted to measure, on average. Consider
some examples. Old data can cause bias. For example, performance in last
year’s competition is likely to be an imperfect predictor of performance this
year, perhaps in systematic ways (eg by age, younger individuals/teams getting
better in expectation, older ones getting worse). Data that was generated by a
different process than the one we intended can cause bias. If we ask people to
code which of two political candidates is more charismatic, but they actually
just code which one they would vote for, we will measure something about the
latter rather than the former, which is a form of bias.

One of the strengths of competition data can be a very close connection
between the data and the concept. If we define the concept as “which units tend
to win competitions like the ones that we observe” then observing data about
who wins is really the best data we can hope for. Note that this is not true
when we start to move towards using this as a measurement strategy for hu-
man/expert/crowd coded data. If we ask people to make pairwise comparisons
on the basis of some concept, we will learn how they think about that concept
in this application, but that doesn’t necessarily make their conceptualization of
that concept correct in any more general sense.





8
Supervised Scale Measurement using Regression

Where do the marks on a ruler come from? Why are we confident that they
match the marks on other peoples’ rulers? What defines the length of a (centi)meter
(or a foot, or any other unit)? From 1983-2019 the definition of a meter was
the length of the path travelled by light in vacuum during a time interval of

1
299792458 of a second.

1 If this is the “gold standard”, what gives you license 1 The original meter was defined relative
to the size of the earth in 1798. From 1799
to 1960, the meter was defined in terms
of a series of canonical objects made out
of platinum and iridium, stored in Paris.
From 1960 to 1983, the meter was defined in
terms of a number of wavelengths emitted
by a particular electron state transmission
in Krypton 86. In 2019 the definition was
amended to clarify the definition of a second,
which is itself defined in terms of electron
state transmissions in Caesium 133. see
https://en.wikipedia.org/wiki/Metre

to make claims about the length of things in meters on the basis of a simple
straight-edged ruler made out of plastic, wood or steel?

The key feature of a ruler is that it is calibrated to match the gold standard.
The marks on the side of a ruler tell you how to use it as an indicator of length.
A typical ruler will not have been calibrated directly against the speed-of-light
based standard, but against some more convenient approximation of that
standard. However the calibration was conducted, its result is that a given
number of marks on the ruler closely corresponds to a given distance in the
conventional units.

Properly used, a ruler will yield a measurement that is only accurate to a
certain degree of precision. There is measurement error, from imperfections
in the manufacture of the ruler, from the fact that the marks on the ruler have
width, and from the process of actually holding it up to what you wish to mea-
sure and attempting to see exactly which marks on the ruler correspond to the
distance you are interested in. You would not expect to be able to accurately
measure lengths at the micrometre (10−6m), let alone the nanometre (10−9m)
scale. But for everyday objects and many purposes, accuracy to within a mil-
limetre (10−3m) or even a centimetre (10−2m) is good enough, and the cheap-
ness and ubiquity of a straight-edged ruler makes it an excellent measurement
instrument for such tasks.

In this chapter, we consider the much messier, but nonetheless analogous,
production of social science measurement instruments in the context where
we have a gold standard for what we want to measure (like the international
definition of the meter) and wish to use more readily available indicators (like a
long piece of plastic, wood or metal) to measure that same concept. How do we
put the lines on the ruler?

https://en.wikipedia.org/wiki/Metre
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8.1 Training with Continuous Data

Consider the case where we have a set of “gold standard” measurements ;
from some pre-existing measurement procedure for the concept of interest `.
These measurements should either be on the desired measurement scale, or
some transformation thereof. This is often called the training data, which we
are using here to calibrate a new measurement procedure. Our new measure-
ment procedure will be based on a set of one or more indicators � (�1, �2, etc)
that we want to use to to measure this concept. Our goal, then is to determine
how to most effectively use them to approximate `, given the indicator vari-
ables � that we have, plus the information contained in ; about how they relate
to `.

If ; are on the scale on which we want to measure `, we have the most
straightforward case to implement. Constructing the best approximation of
; using � is straightforward: this is what regression does. If we use linear
regression:

;7 = U + V1�17 + V2�27 + · · · + n7 (8.1)

Recalling the definition of linear regression, a linear regression of ; on � will
give us the best linear approximation ;̂ of ; using � , which is to say the one
that minimises the sum of squared errors. Equivalently, it minimises the mean
square error:

"(� =
1
#

∑
7

(; − ;̂7)2 (8.2)

Note that the errors/residuals n7 from this regression are the measurement
error n; = ; − `, as we have defined it previously.

Our new measure of ` for a given unit 7 is then the fitted value ;̂7 = V̂0 +
V̂1�17 + V̂2�27 + · · ·. Thus, through the simple application of regression, we
have a measurement instrument that uses only the V̂ that we estimated in this
calibration exercise plus the indicator values � for the units for which we want
to measure `.

It is important to note that one need not limit the regressions considered to
linear regressions using the set of indicators. Within the framework of multiple
regression, one can include interactions of indicators or non-linear functions
of indicators. More generally, one can use semi-parametric or non-parametric
regression methods. The goal is the generic goal of all regression methods: to
use the indicators to best approximate the target concept, which is to say, to
minimise mean square error 1

#

∑
7 (;̂7 −;)2.

When thinking about how to apply this rich variety of regression methods
to this kind of measurement task, the usual considerations of “supervised
learning” from machine learning apply. The primary interest is in the quality
of the measurement, not in the individual indicators, which is to say we care
about our estimates of the concept of interest ˆ̀ rather than about the estimates
of any parameters like V̂ that link ` to the observable indicators � . Parametric
models will lead to particularly transparent measurement procedures, where
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the contribution of individual indicators are simply describable in terms of
their coefficients V. Where there is a limited size training dataset, moving
from linear models to more flexible models will yield limited predictive gains,
but where there are more substantial training data sets the tension between
transparency of how such measures are constructed and the quality of the
resulting measurements may be more severe.

8.1.1 Applicability

There are two key things that must be true to make this approach useful:

1. We have a gold standard measure ;[ˆgoldstandard] of the target concept `
for some units, but lack that measure for other units.

2. We have one or more indicators � that predict the target concept ` for all
units.

Note that these hold in the motivating example of the straight-edged ruler.
There is a gold standard definition of length (the meter) involving the speed
of light, but we cannot easily apply it to all measurements we want to make.
However, we can calibrate a measurement instrument (the ruler) using the gold
standard and then use that measurement instrument more widely.

Even assuming that you are in the appropriate context to construct a mea-
surement procedure in this way, the quality of the measures derived from this
approach rely on three key assumptions, stated qualitatively here:

• Training Data Quality: It needs to be the case that the deviations of the
gold standard measure ; from the target concept ` are small and are not
associated with quantities relevant to the intended application.

• Representative Training Set: It needs to be the case that differences in
the relationship between the indicators and the target concept, for the units
in the calibration set versus the population where you want to apply the
measurement procedure, are small and are not associated with quantities
relevant to the intended application.

• Indicator Quality: It needs to be the case that the indicators are suffi-
ciently predictive of the gold standard measure such that the residual error
of the regression is small and is not associated with quantities relevant to
the intended application.

In each case, the resulting errors can be problematic either because they are
large in magnitude or because they induce errors associated with quantities rel-
evant to likely applications of the measure. If the errors are large in magnitude,
the consequence is that the resulting measure is a very noisy approximation of
the target concept, leading to imprecise unit-level assessments, and potentially
leading to attenuation biases in aggregate analyses. If the errors are associated
with quantities relevant to likely applications, the measurement errors will
generate biases in subsequent analyses, for the reasons discussed in Chapter 5.
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What, then, do we need to be particularly attentive to, with respect to the
quality of the training data, the representativeness of the training set, and the
quality of the indicators?

There is sometimes very little flexibility when choosing your gold standard
/ training data. It is rare that one has much control over the properties of the
gold standard measurement procedure, or a choice among multiple such gold
standard measurements. More often the problem is the lack of any training
data at all. Nonetheless, it is vital to remember that your new measurement
strategy can be no better than the training data that you use to develop it,
because that is its only connection to the target concept. If your gold standard
does not deserve that name, the even noisier measure you calibrate using it can
only be worse.

Just as you will not usually have much choice in which training data to use,
you will only sometimes have any choice regarding the observations that you
can use to learn the relationship between indicators and the target concept.
The ideal is a sufficiently large random sample from the target population to
which you aim to apply the measurement procedure that you are developing.
This is possible in some applications, but more typically it is not. In many
applications, where the measurement is meant to be used prospectively, the as-
sumption is that the past relationships hold in the (near) future. The worst case,
which is not uncommon, is where there are systematic differences between the
units in the training data that you use for calibration of the procedure and the
units to which you aim to apply the measurement strategy.

Finally, and here you typically have more control, there is the question
of which indicators to use and how to model their relationship to the gold
standard / target concept. Here is where you can use all the tricks you know
for improving prediction: interactions, non-linear models, etc. Usually the
indicators you have available are the key constraint, fancier models are seldom
worth a lot by comparison to better (ie more predictive) indicators, but they
can help a bit. Some target concepts are easier to approximate with available
data than others, there is not much you can do here other than look for new
and better indicators (that are nonetheless available for all units). Note that if
the indicator set is missing key aspects of the target concept, those aspects will
be missing from the measure.

This measurement strategy assumes that you already know how to measure
the concept of interest reasonably well, but for some reason you are not able to
do so for all the units that you are interested in. Thus, this kind of approach is
most useful in a few types of situations:

1. When the training data is costly to construct. You have a very large set of
units about which you know a few things (the indicators) and a small set of
units for which you can invest effort to construct better measurements

2. When the training data is only available for the past. You have a set of units
for which you observed the indicators and the target concept in the past, but
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you want to measure the target concept for observations where it has yet to
be realised.

3. When the training data is only available for a different population of unit
than the one you are interested in. You have a set of units for which you
observed the indicators and the target concept, and want to use this to
measure the target concept for a different type of unit.

Note that the second and third kind of application present immediate
concerns about whether the training set is representative: past relationships
between target and indicators may not reflect future ones, and relationships in
one population of units may not reflect those in another.2 2 Arguably these are the same type of sit-

uation, defining the two populations with
respect to time as opposed to other criteria.

8.1.2 Validation

The information available with which to do validation of these regression-
based measurements will vary by application, but there is one source of in-
formation that is always present by virtue of the setup: the training data mea-
surements themselves. Model fit for the training data is often the best available
validation standard. The familiar '2 statistic describing proportion of vari-
ance explained in the sample of data used to fit the model is a problematic
measure here for the usual reasons: it rewards overfit models that are likely
to predict poorly out-of-sample. We are precisely interested in out-of-sample
fit in this instance, since the core of the measurement strategy is constructing
predictions for new observations from a fitted model. We do not care about
the magnitude of measurement error for the training data, we care about the
magnitude of measurement error in the population of units to which we will
apply the measurement strategy. Adjusted '2 provides a more suitable estimate
of population variance explained, for the population from which the training
data were drawn. One can form population estimates of a variety of measures of
fit—eg mean absolute error (MAE) or root mean square error (RMSE)—using
cross-validation.

How much model fit can tell you about measurement error in the popu-
lation of units to which you will apply the measurement strategy depends on
the relationship between the training data and that target population. The best
case are applications of the first type described above—where the training
data is simply costly to construct—because in these cases one can generate
training measures for a random sample of the target population. In these cases,
unbiased estimates of model fit for the gold-standard are unbiased estimates
of model fit for the target population as well. In cases where the training data
is available for a different time period or for a different population of units,
model fit statistics calculated using the training data may or may not give you
a good sense of the magnitude of measurement errors for the measurements
generated on the target population.

https://en.wikipedia.org/wiki/Cross-validation_(statistics)
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8.2 Training with Binary/Categorical Data

There are many applications where we want to measure a continuous quan-
tity ` with a set of indicators � , but lack training data on the scale we want to
measure. In some of these situations, however, we have binary or ordered cat-
egorical data ; that is closely associated with the concept we want to measure.
In these cases, we can use these training data to similarly generate continuous
scale measures using logistic (or other categorical response) regression models.

This is a particularly useful approach where we want to measure a concept
that is something like the “propensity to have ; = 1 as opposed to ; = 0”
for some binary training data ; or the “propensity to have higher values of ;
rather than lower values ; for ordinal data. Note that in these instances, even
though our training data is categorical, we are still aiming to measure a con-
tinuous quantity. Closely related strategies for measuring binary/categorical
quantities will be discussed in Chapter 10.

If we use binary logistic regression, we have the regression equation:

log
>(;7 = 1)
>(;7 = 0) = U + V1�17 + V2�27 + · · · (8.3)

Our measured scale could then be either on the log-odds scale (running from
−∞ to∞)

;̂∗ = U + V1�17 + V2�27 + · · · (8.4)

or on the probability scale (running from 0 to 1):

;̂ =
4F> (U + V1�17 + V2�27 + · · · )

1 + 4F> (U + V1�17 + V2�27 + · · · )
(8.5)

Which of these is more relevant will depend on the application, and whether it
is more desirable to have a measure with a probability scale interpretation or a
measure that is a linear function of the indicators.

Whereas with continuous training data ;, where we can use nearly any
regression method, here we do need models for binary data that generate
probabilistic predictions >(; = 1) as opposed to merely generating binary
classifications ; ∈ 0, 1 for specific units. This is nonetheless a very substantial
set of methods to choose from. There are trade-offs between what is possible
given the size of the training data sets, the number of indicators, and so on.

8.2.1 Applicability

The potential problems associated with training using continuous gold-
standard data all apply to training with binary/ordered categorical data as
well. We still need to worry about the quality of the gold standard data and
any potential discrepancies between those data and the target concept. We still
need to worry if the relationships between the indicators and the gold stan-
dard data in the training data set is unrepresentative of the relationship in the
population to which the measurement procedure will be applied. We still need
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to worry about whether our indicators are sufficiently predictive of the gold
standard, and whether we have chosen the best possible approximation of their
relationship through indicator selection and appropriate functional form.

To take a typical application, say that you want to measure (the concept of)
someone’s risk of defaulting on a loan. You take a data set of people who got
loans in the past, build a predictive model of who defaulted based on character-
istics that you can measure before the loan was given, and calculate the fitted
value for people trying to get a loan now to give each a “loan score”. What are
you doing here other thanmeasuring the (concept of) propensity to default
on a loan? This example highlights some of the potential problems that one
needs to look out for in applying this approach. You are measuring propensity
to default given that someone thought it was reasonable to give that person a
loan at the time. If you change the criteria for giving out loans, the propensity
to default as a function of indicators may not stay the same. The issue here is a
potential violation of the assumption that the relationship between the indica-
tors and the target concept is the same for the training (gold standard) data and
the data for which you want to make predictions (new measurements). This
is particularly likely in this example, because the selection into the training
set was conditioned on expectations about the concept that we are trying to
measure: default risk. A similar selection problem arises when trying to study
whether tests used in university admissions predict performance in university:
you only observe university performance for those students who are admitted.
Those students will be unrepresentative of the broader applicant pool and the
relationship between pre-admissions test performance and university perfor-
mance that holds among matriculating students may not be the same as across
the entire applicant pool.

The advantage of using binary or ordered categorical training data is that it
potentially makes supervision possible for a much larger number of concepts.
Even if there is no existing categorical training data, in some applications it is
possible to create the training data by surveying relevant experts. Sometimes
you do not even need experts, random members of the public can be expected
to have an idea of how to map the available indicators into the presence versus
absence of the concept you want to measure. This process of “crowd-sourcing”
your training data is sometimes used in quantitative text analysis, where the
indicators are features of a text—the presence of words or combinations
thereof—and the target concept is something that a human might be able to
perceive in a written text. This might be the use of emotional language, the
use of populist arguments, or any of a very wide variety of concepts. With a
sufficient number of human codings of whether these concepts are present or
absent, it becomes possible to train a measurement model for the presence or
absence of these concepts.3 3 In other applications, these data are used for

validation of existing measurement strategies.
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8.3 Application - Election Outcomes on Alternate Geographies

The 2016 referendum on EU membership in the UK ultimately resulted in the
UK leaving the EU in early 2020. In the interim, there were two UK general
elections in 2017 and 2019, called “early” in response to the political compli-
cations created by the referendum result. Many academic researchers, and
political analysts more generally, were interested in how vote shifts in these
elections were shaped by voters’ referendum preferences, but the way in which
the referendum vote was tallied and reported in 2016 meant that there were no
official figures for how the referendum vote was distributed at the level of UK
parliamentary constituency. The 2016 referendum was reported at the level of
local authorities, of which there are 380 in England, Scotland and Wales.4 That 4 The referendum results in Northern Ireland

were reported on parliamentary constituency
boundaries.

same area includes 632 parliamentary constituencies, each of which sends one
MP to Parliament.

The analysis we are going to do here to generate the missing measures is a
simplified version of the analysis done by Hanretty (2017). Hanretty’s estimates
are the most widely used measures of EU referendum vote on parliamentary
constituency boundaries. Our analysis here will ignore the geographic overlap
of the different areal units, as that is beyond our scope, but see the original
paper for further discussion of how to use this information to further improve
the estimation strategy. Our version of the analysis will proceed as follows:

1) Fit a regression model predicting 2016 leave share in the 380 local authorities
using a selection of demographic variables measured at the local authority
level.

2) Construct fitted values from the regression model for all 632 constituencies
in England, Scotland and Wales using those same demographic variables
measured at the constituency level.

This analysis is based on calibrating the relationship between a set of indica-
tors and the target of the measurement and then extrapolating to a new set of
units. As discussed earlier, in order to evaluate how well this is likely to work,
we need to consider three potential problems.

First, how good is the gold standard measurement? In this case, it is excel-
lent: it is the official return of the election at the local authority level. There is
nothing to worry about here.

Second, is the relationship to demographic variables similar in the units on
which we train/calibrate the model (local authorities) to the relationship in the
units on which we will apply that model to construct fitted values (parliamen-
tary constituencies)? This is a more subtle question than the first two. Local
authorities are somewhat larger on average than constituencies and are also
much more variable in their population sizes. They reflect enduring political
entities with their own local governments (ie councils) to a greater degree than
constituencies, which are substantially redrawn much more frequently. Even
though they describe the same land area and set of voters overall, the Modifi-

https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem
https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem


pragmatic social measurement 145

able Areal Unit Problem means that it is possible that the relationships between
vote and demographic variables at the local authority level are different from
those at the constituency level. If the UK had US-style gerrymandering of
constituencies, we might worry about whether constituencies were designed
to have particular political alignments, but the general consensus is that UK
parliamentary constituencies are not aggressively gerrymandered (and in any
case, these boundaries had been in place for several election cycles and were
mapped in a period when leaving the EU was not viewed as a serious propo-
sition). These potential sources of error are real possibilities, although (in the
author’s estimation) both are unlikely to be terribly severe in this instance.

Third, how strong is the relationship between the indicators and the tar-
get of the measurement? Is support for leaving the EU strongly predicted by
available indicators for local authorities, or not? This is something we can de-
termine by taking the indicators we have to work out, and seeing how well
they predict the vote. Let’s find out.

We proceed by fitting a model predicting the Leave vote percentage in each
of the 380 local authorities, with the following variables from the 2011 UK
Census: median age, proportion white, proportion owning rather than renting
their homes, proportion with no formal educational qualifications, proportion
with university degrees or equivalent (Level 4+), proportion with “Higher
managerial, administrative and professional occupations” (NSSec 1), proportion
“Small employers and own account workers” (NSSec 4), proportion “Lower
supervisory and technical occupations” (NSSec 5), and indicator variables for
Scotland and Wales. Note that there are many variables one could use at this
stage, and a variety of variable selection strategies, which are discussed later in
this chapter.

This particular regression has 10 explanatory variables and achieves an
adjusted '2 statistic of 0.89 and a residual standard deviation of 3.46. The '2

statistic suggests that the model “fits well”. The residual standard deviation
gives us an estimate of magnitude of the measurement error, if our application
were to local authorities. Given a ±2 standard deviation rule of thumb, this
suggests that most of the measurement errors would be less than 7 percentage
points in the Leave vote share.

It is often difficult to validate the magnitude of errors from this kind of
regression-based measurement strategy, especially in a case like this where we
are training on a different type of unit than we ultimately want to measure.
However, in this instance we have some additional information: both have
the estimates reported by Hanretty (2017) and also exact known results for 27
constituencies (see discussion in the cited paper).

Figure 8.1 shows comparisons of our regression estimates to the results
in the few known constituencies (left), of the Hanretty estimates to those
same results (left-center) and the comparison of our regression estimates
and Hanretty’s estimates in those few known constituencies (right-center)
and all constituencies (right). In the left panel, we see that in the 27 known

https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem
https://en.wikipedia.org/wiki/Modifiable_areal_unit_problem
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Model 1
(Intercept) 46.19∗∗∗

(3.64)
MedianAge 0.26

(0.16)
White −7.31∗∗

(2.52)
Own 25.62∗

(11.47)
No.qualifications 24.35∗

(10.65)
Level.4.qualifications.and.above −167.21∗∗∗

(11.42)
NSSec1 183.78∗∗∗

(22.39)
NSSec4 54.80∗∗

(16.75)
NSSec5 214.34∗∗∗

(31.14)
ScotlandTRUE −17.00∗∗∗

(0.82)
WalesTRUE −3.66∗∗∗

(0.86)
R2 0.89
Adj. R2 0.89
Num. obs. 380
∗∗∗> < 0.001; ∗∗> < 0.01; ∗> < 0.05

Table 8.1: Statistical models
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Figure 8.1: Regression estimates (left) and
Hanretty estimates (left-center) of UK parlia-
mentary constituency leave vote share in 2016
referendum, versus known parliamentary
constituency results. Comparisons of regres-
sion estimates with Hanretty estimates in the
subset of known parliamentary constituen-
cies (right-center) and all constituencies
(right).
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constituencies, the root mean square error5 (RMSE) is 6.6 percentage points of 5 '"(� =

√
1
<

∑< (estimate − target)2

Leave vote share. If we think of this as an estimate of the standard deviation
of the measurement errors, it illustrates that the measurement error resulting
from this analysis is still non-trivial, despite the seemingly high '2 of the
regression model. Given a ±2(� rule of thumb, this suggests that most of the
measurement errors will be less than 13 percentage points.

The measurement error in the known constituencies is thus substantially
larger than what the residual standard deviation estimate suggested. This could
be because the latter reflect fit to local authority results and there really are
substantial differences in the demographic associations with vote in parliamen-
tary constituencies. However, there is some reason to think that the known
constituency result analysis overstates the magnitude of the errors across all
constituencies. The right two panels of Figure 8.1 show that the discrepancies
between the regression estimates we have developed and Hanretty’s estimates
are atypically large in the known constituencies (which are not a random sam-
ple).

We also see from a comparison of the left two panels that Hanretty’s esti-
mates are clearly better than what we were able to achieve with this simple
regression strategy. The additional information that Hanretty uses comes from
the geographic overlaps between the 380 local authorities and 632 constituen-
cies and also the strict adding up constraints for total votes. We have not used
these here because they are application-specific features of this particular prob-
lem: areal interpolation is just one illustration of the method, albeit one where
one can go further than our regression analysis. Nonetheless, the core of Han-
retty’s analysis is a similar regression strategy of estimating the relationship
between local authority demographics and referendum vote and then apply-
ing that relationship using the same demographic variables measured at the
parliamentary constituency level.

How important are errors of this magnitude? Here it is difficult to say any-
thing in general. If you are interested in specific constituencies—for example,
if you are a campaign deciding which seats to target in an election—you might
care a great deal about an error of 10 percentage points. A seat with a Leave
vote of 45% is a rather different prospect for the Conservative party than one
with a Leave vote of 55%. If you are instead a social scientist, interested in
patterns across all constituencies, it is less clear that this level of error is prob-
lematic. A great deal will depend on whether the patterns of measure error
are uncorrelated with the other variables used in such analyses. In this situa-
tion, there is no particular reason to expect that measurement errors will be
correlated with most variables of interest, as they primarily reflect deviations
of real aggregate voting behaviour from a demographic model, which do not
immediately suggest any important patterns of bias. This is not to say that such
biases will definitely not exist.

We do not always have the benchmarks that we had in this example with
which to validate regression-based measurement strategies like this one, but
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even here we can see that validation often involves a collection of imperfect
indications about the quality of the measurement. We can use predictive per-
formance for the training data, but that does not directly apply to the target
population unless the training data were a random sample. We can some-
times use other benchmarks, but they may themselves be measured with error
(Hanretty’s estimates) or be incomplete (the known constituency results). This
means that there is a core role for qualitative reasoning about likely errors, just
as we might qualitatively reason about plausible sources of sampling biases
for population inference or selection biases for causal inference. We have been
doing these kinds of assessments throughout the preceding discussion, but the
key questions to keep in mind are those raised by the three key assumptions
that we discussed at the outset of this chapter. What is the quality of the train-
ing data? How representative is the training data of the target population? How
predictive are the indicators?

8.4 Application - Turnout Propensity

As discussed earlier in this chapter, one class of regression-based measure-
ments looks a great deal like exercises in prediction. In these applications, a
model is trained on past data, and used to predict future data. This kind of pre-
dictive exercise is the core of most machine learning discussions of regression,
and is covered from that perspective in many excellent books (eg James et al.,
2013). Here, we are going to think about the properties of the fitted values or
predicted probabilities as a measurement in themselves.

One example of this kind is where we want to measure an individual char-
acteristic of “propensity to turnout in a general election” for a large number of
individuals about whom we have some indicator data (such as previous election
turnout, demographic variables, etc).6 Such measures are potentially useful to 6 Indeed, it is difficult to imagine any other

way to measure propensity to turnout other
than using demographic indicators and past
patterns of behaviour.

campaigns, in order to determine where to target get-out-the-vote resources
(on those who are marginal to turnout rather than those very likely to do so) as
well as persuasion resources (on those who are likely to vote rather than those
who are not). This information is also useful to social scientists, particularly if
they are interested in how politicians might represent the views of voters rather
than non-voters, or other questions that turn on which kinds of people tend to
vote.

Here, our training data is binary, but we want a continuous measure of
“propensity” to or probability of voting, not a binary classification of indi-
viduals we think will vote versus those who will not. So we will fit a logistic
regression model predicting turnout in that previous election using the set of
variables. Note again that we could use any predictive model here that we like,
so long as it can form predicted probabilities. Let us begin by considering the
same kinds of potential risks that we have discussed previously.

First, what is the quality of the training data? Unlike the previous example,
where the training data was measured without error, individual voter turnout
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training data has several possible sources of error. Where it is self-reported, it
is at risk of errors of overstatement (Ansolabehere and Hersh, 2012; Achen and
Blais, 2015); where it comes from validating against voting records, it is at risk
of record linkage errors.

Second, are the relationships in the training data representative of the pop-
ulation of units for which the measure is to be constructed? The relationships
with the indicators may change change from election to election. With this
kind of predictive measurement application, we have the opportunity for val-
idation only after the subsequent election, but this is nonetheless useful for
assessing the approach in a more general sense. Of course in some sense a good
or bad performance of such scores in a given election is just a single data point,
one would need to repeat the exercise across many elections to assess whether
the approach tends to work or not.

Third, are the available indicators adequately predictive to give useful in-
formation? If the predicted probabilities of voting only vary from 60-80% in a
population with a 70% turnout rate, that is of limited use for most applications.
The ideal, of course, would be if one could make very strong probability pre-
dictions that approach a binary classification: very low probabilities of voting
for some units and very high probabilities for others.

To illustrate this application, I use training data from the 2015 British Elec-
tion Study (Fieldhouse et al., 2016), a survey conducted with face-to-face sur-
veys after the 2015 UK general election. This study included a vote validation
exercise where voter turnout was verified against voter registration records. I
then construct measures using the 2017 British Election Study (Fieldhouse et al.,
2018), conducted using the same methods after the 2017 UK general election.
Thus the measurement itself is the set of respondent-level turnout predictions
for individuals in the 2017 study, although one could have constructed similar
measures for any individual in advance of that election, given the requisite
indicator data. Because this is a predictive measurement problem, I will then
be able to validate the measures by comparing the predicted probabilities of
voting to the validated vote data collected after the 2017 election.

As in the previous example, I will set aside the question of model and vari-
able selection, and just proceed with a single regression specification. Once
again, the appropriate criterion by which to select a regression model in
this context is out-of-sample prediction, and therefore selection by cross-
validation/AIC or other statistics that penalise in-sample overfitting is ap-
propriate. The regression whose coefficients I report above reveals familiar
patterns in voter turnout, many of which are robust across both different elec-
tions in the UK and also across developed countries: all else equal, turnout is
higher among those who voted in the previous election, among older voters,
among those with greater educational qualifications, among those who are (or
have been) married, and among those who own their homes.

Figure 8.2 shows the distribution of individual-level vote propensity mea-
sures, on a probability scale. There are many individuals whom we expect

https://en.wikipedia.org/wiki/Record_linkage
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Model 1
(Intercept) 0.42

(0.30)
lagged_turnout 1.44∗∗∗

(0.12)
bs(age, 4)1 −2.12∗∗∗

(0.47)
bs(age, 4)2 0.21

(0.48)
bs(age, 4)3 −0.07

(0.68)
bs(age, 4)4 −0.50

(0.92)
genderFemale 0.07

(0.11)
qualificationsLevel 1 0.32

(0.24)
qualificationsLevel 2 0.43∗

(0.19)
qualificationsLevel 3 0.73∗∗∗

(0.20)
qualificationsLevel 4 0.44∗

(0.19)
qualificationsLevel 5 and above 0.82∗∗∗

(0.19)
qualificationsOther −0.04

(0.32)
maritalNever Married/Partnered −0.50∗∗

(0.16)
ethnicityAsian 0.00

(0.21)
ethnicityBlack −0.60∗

(0.28)
ethnicityMixed/Multiple −0.18

(0.47)
ethnicityOther −0.76

(0.98)
tenureRenter −0.71∗∗∗

(0.12)
AIC 2118.34
BIC 2224.44
Log Likelihood −1040.17
Deviance 2073.01
Num. obs. 1967
∗∗∗> < 0.001; ∗∗> < 0.01; ∗> < 0.05

Table 8.2: Statistical models
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Figure 8.2: Distribution of estimated turnout
probabilities for 2017 British Election Study
respondents, based on demographic patterns
in the 2015 British Election Study, for all
voters (left), those who say they voted in the
previous election (center), and those who say
they did not (right).

to vote with very high probability. Much of this is due to the high predictive
power of (self-reported) voting in the previous election, but the plots at center
and right show that there is nonetheless a lot of variation associated with the
other indicators, holding previous election voting fixed.
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Figure 8.3: Voter turnout in 2017 for British
Election Study respondents, given their
estimated turnout probability based on
demographic patterns in the 2015 British
Election Study. Fitted curve shows that the
turnout proportion in 2017 closely resembles
the demographic predictions based on 2015
voting demographic patterns.

When we turn to validation, we see in Figure 8.3 that the measure of turnout
propensity validates well for predicting turnout in the 2017 election. The figure
shows that, as the measured probability of turning out increases, the proba-
bility of actually turning out increases, tracking very close to the diagonal line
corresponding to the realised proportions equaling the predicted probabilities.
This is a case where the predictive performance of the measure is very good:
demographic turnout patterns in the 2017 UK general election closely tracked
those from the previous election (Prosser et al., 2020), and so our measurement
strategy of using past patterns of behaviour to train a measurement model de-
scribing the relationship between a set of indicators and training data from the
past works well.
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8.5 Application - Is this a Curry?

In 2019, an American cookbook writer and recipe columnist Alison Ro-
man published a recipe entitled “Spiced Chickpea Stew With Coconut and
Turmeric”. This recipe became extremely popular and was widely shared. Very
quickly, it was critised for failing to acknowledge that it is a “curry”. Roman’s
response was “I’ve never made a curry, I don’t come from a culture that knows
about curry. . . . I come from no culture. I have no culture. I’m like, vaguely Eu-
ropean.” Our focus here is not on whether this makes any sense as a cultural
stance, but rather on the question of what constitutes a curry, and whether we
can measure “curry-ness” from a recipe.

If ever there was a context in which quoting a dictionary definition seemed
appropriate, this is it. According to the Oxford English Dictionary, the rel-
evant definition of curry is “A preparation of meat, fish, fruit, or vegetables,
cooked with a quantity of bruised spices and turmeric, and used as a relish
or flavouring, esp. for dishes composed of or served with rice. Hence, a curry
= a dish or stew (of rice, meat, etc.) flavoured with this preparation (or with
curry-powder).”7 Other definitions emphasise spicing as well, eg “a dish of 7 “curry, n.2”. OED Online. March 2020.

Oxford University Press. (accessed May 26,
2020).

meat, vegetables, etc., cooked in an Indian-style sauce of hot-tasting spices and
typically served with rice”.

Figure 8.4: Curry recipe in the 1758 edition of
The art of cookery, made plain and easy by
Hannah Glasse

The etymology of the term is believed to be from Tamil, from which arose
the Portuguese “caril” and English and French forms of the word with various
spellings. There are scattered references in sources, but the first appearance
of a “currey” in a English language cookbook is in the first edition of “The art
of cookery, made plain and easy” by Hannah Glasse, published in 1748. The
original edition of this (best-selling and influential) cookbook included a recipe
entitled “To make a Currey the Indian Way”, which included the spices of co-
riander and black pepper. The 1758 edition revised the recipe, with the spices
now including turmeric, ginger and black pepper (but no coriander). “Some-
where along the line, the word ‘curry’ came to be applied to a vast number of
South and Southeast Asian foods. . . The unifying factor in all international
curries is the presence of a sauce flavored by a spice mixture.”8 8 https://www.escoffieronline.com/

what-makes-a-curry-a-curry/If it is the spices that make something a curry, we might reasonably ask
which spices are indicative of something being called a curry rather than a
“stew” or something else entirely. How might we measure the concept of
“curry-ness” based on use of spices?

Since the category of “curry” is an English language invention associated
with the British Empire, we will attempt to develop a measurement strategy
for whether something is a curry according to the de facto arbiter of correct
British English usage: the British Broadcasting Corporation (BBC). We will use
a collection of 9384 recipes scraped from the BBC recipe archive by the author
in 2016 when the BBC threatened to take down the archive for budgetary
reasons. I have cross-referenced the ingredient lists with a slightly modified list
of herbs and spices from the Encyclopaedia Britannica in order to create a 9384

https://cooking.nytimes.com/recipes/1019772-spiced-chickpea-stew-with-coconut-and-turmeric
https://cooking.nytimes.com/recipes/1019772-spiced-chickpea-stew-with-coconut-and-turmeric
https://www.washingtonpost.com/opinions/2020/05/13/rise-fall-alison-roman/
https://jezebel.com/alison-roman-is-more-than-thestew-1838861751
https://jezebel.com/alison-roman-is-more-than-thestew-1838861751
https://jezebel.com/alison-roman-is-more-than-thestew-1838861751
https://www.escoffieronline.com/what-makes-a-curry-a-curry/
https://www.escoffieronline.com/what-makes-a-curry-a-curry/
https://www.bbc.co.uk/food/recipes
https://www.bbc.co.uk/news/uk-36308976
https://www.bbc.co.uk/news/uk-36308976
https://www.britannica.com/topic/list-of-herbs-and-spices-2024392
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by 72 matrix of binary variables, each indicating the presence or absence of a
given herb or spice in a given recipe.

Table 8.3: Word stems for the 20 most frequently used herbs and spices in
the BBC recipe archive.

x

black_pepper 3367
garlic 2313
chilli 1218
parsley 995
coriander 844
ginger 815
thyme 785
vanilla 509
cinnamon 482
bay_lea 468
cumin 441
basil 359
mint 330
rosemary 322
chives 321
sesame 301
sage 289
turmeric 274
paprika 268
red_pepper 261

Among the 9384 recipes in the archive, 147 use the word “curry” in the title.
Note that while this provides us with data that we can use as training data for
what constitutes a curry, it clearly does not capture all recipes in the archive
that would be commonly understood as curries. For example, there are 13
recipes that contain the character string “tikka”, many of which are variants
on the most popular curry in the UK, chicken tikka masala, none of which are
named “curry”.

Name

Chicken tikka and naan bread
Chicken tikka masala
Chicken tikka masala
Christmas barbecued coconut prawns and chicken tikka
Halibut tikka masala with basmati rice
Low-fat chicken tikka masala
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Name

Monkfish tikka masala with roti
Monkfish tikka kebabs with yellow bean salad
Salmon tikka wraps
Sheek kavaab naan with malai tikka naanwich
Skewered chicken tikka with spicy lemon-scented rice
Succulent chicken tikka wraps
Tikka paneer cheese with sweet chilli dip

There are many other curries hiding under other names, so while we can
be pretty confident that anything labeled as a “curry” is actually a curry, there
will be false negatives associated with curries that have more specific names.9 9 Note that I am not including “curried” here,

as that includes many dishes that deploy
curry powder as a seasoning, many of which
are not typical curries as they lack a liquid
sauce, eg “Steak with curried sweet potato
chips”.

While we might use other metadata in the recipe archive to identify these, we
are going to limit ourselves to the title text and what we can learn about the use
of herbs and spices in those recipes that are explicitly labled as a “curry”.

I fit a logistic regression predicting whether each of the 9384 recipes has
the string “curry” in the title, using the binary variables for the presence of
each of the 72 spices. There are a large number of indicator variables in this
example, some of which only appear very rarely in the recipe archive. Because
of this, I use a Bayesian logistic regression to regularise the coefficients.10 10 I use the default prior scale of 2.5 on the

logistic regression coefficients in the R
package “arm”.

The details and motivation for regularization in this kind of application are
discussed in the next section, for present purposes simply note that the change
of estimation procedure does not change the interpretation of the coefficients
or the mathematics of constructing the fitted values / predicted probabilities as
measures.

Table 8.5: Estimated logistic regression coefficients for predicting the
presence of the term “curry” in a recipe title, using the presence or ab-
sence of various herbs and spices.

coef se

(Intercept) -5.07 0.18
asafoetida -2.53 1.59
vanilla -2.27 1.43
saffron -2.18 1.47
mint -1.94 0.83
oregano -1.83 1.45
allspice -1.77 1.54
sage -1.72 1.44
rosemary -1.68 1.44
dill -1.25 1.50
parsley -1.25 0.64
tarragon -1.17 1.52
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coef se

sesame -1.09 0.65
thyme -0.98 0.68
anise -0.70 1.26
bay_lea -0.67 0.48
caraway -0.66 1.71
marjoram -0.65 1.72
horseradish -0.64 1.72
cinnamon -0.44 0.38
paprika -0.44 0.48
holy_basil -0.39 1.92
wasabi -0.29 2.00
chicory -0.28 2.02
lavender -0.28 2.02
sorrel -0.26 2.04
lemon_verbena -0.24 2.07
cassia -0.23 1.01
mace -0.20 0.82
black_pepper -0.18 0.21
red_pepper -0.14 0.47
savory -0.11 2.26
fennel -0.04 0.48
cayenne_pepper 0.06 0.66
black_cumin 0.09 1.12
nutmeg 0.11 0.56
star_anise 0.26 1.31
chives 0.33 0.59
basil 0.35 0.51
chervil 0.37 0.97
garlic 0.41 0.22
fenugreek 0.43 0.55
poppy_seed 0.50 1.07
ginger 0.55 0.24
cardamom 0.56 0.35
cumin 0.69 0.25
clove 0.78 0.44
chilli 0.96 0.24
turmeric 0.99 0.25
coriander 1.00 0.24
curry_lea 1.22 0.46
brown_mustard 1.37 1.04
black_mustard 1.50 0.57
lemon_grass 1.50 1.36
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coef se

curry_powder 2.31 0.30

The coefficients indicate which herbs and spices are positively indicative
of being labelled a curry (including turmeric, coriander, lemon grass, and of
course curry powder) as well as which are negatively indicative (including
vanilla, saffron, mint, and rosemary). Some spices, such as black pepper, pro-
vide a very weak indication as to whether a dish will be labelled as a curry or
not. Note that the coefficients corresponding to rarely appearing spices have
very large standard errors.
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Figure 8.5: Distribution of curry scores for
recipes in the BBC recipe archive.

Before we return to Alison Roman’s “stew”, we should do some validation
of the measurement strategy. First, as noted above, we have reason to expect
that there are many curries that have other names, such as “tikka”. What are
the recipes that get the highest “curry score” which do not use the word curry
in the title? Here, for the measure I just use the log-odds scale: U + V1F1 + . . .,
there is no reason to translate to the probability scale. These scores tend to be
negative, as very few of the recipes in the archive are called curries.

name score

Sambhar vada: yellow lentil soup with spiced doughnuts 1.29
Lamb madras with bombay potatoes 1.20
Beef Madras 0.98
Sweet potato bhuna masala 0.98
Cabbage with mustard seeds 0.57
Spicy haddock with stir-fried broccoli 0.52
Spicy lamb and paw paw 0.36
Indian hot-water crust pies 0.33
Kharu pork with deep-fried potatoes and salad 0.25
Masala-marinated chicken with minted yoghurt sauce 0.24
Bengal coconut dal 0.18
Coconut and prawn broth with rice, spinach and chilli 0.16
Goan-style lobster with chips 0.13
Bunny chow 0.09
Lamb dhansak 0.09
Keralan crab with Currimbhoy salad -0.12
Quick-spiced chicken thighs with ’emergency biryani’ -0.15
Coconut and green chilli prawns (shrimp) -0.16
Crisp tofu with chilli, garlic, spinach and soy mushrooms -0.17
Spicy jerk chicken thighs with peppers and rice -0.22
Masala mutton shanks with lemon rice -0.23
Slow cooker dal -0.25
Koli ishtew (chicken stew) -0.27
Chicken and spinach balti -0.47
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name score

Chicken jalfrezi -0.47

Many of the most curry-like recipes not explicitly named curries result for
the use of names for particular types of curries: “madras”, “bhuna masala”,
“dhansak”, “balti”, and “jalfrezi”. There are some that will be non-obvious
to most readers, such as “Bunny chow”, which is a “South African fast food
dish consisting of a hollowed-out loaf of white bread filled with curry.” The
Wikipedia article on this says that this dish is believed to have been developed
by migrant Indian workers to make use of widely available cheap, white bread.

There are a number of high scoring dishes that reveal the limitations of our
ingredient-focused measurement strategy. We have developed a measurement
model that only uses ingredients as indicators. Most definitions of “curry”
emphasize a stew-like consistency involving both whole pieces of meat, vegeta-
bles, etc or a highly spiced “gravy” or “sauce” around those more solid elements.
Some of the recipes that our measurement strategy identifies are soups or dal,
which have a more uniform consistency. They are all “sauce”. At the other ex-
treme, there are also a number of dishes that use a wide variety of spices, but
are arguably not curries because they lack a “sauce” or “gravy” component. For
example, “Cabbage with mustard seeds”11 includes black mustard seed, fenu- 11 Subtitle: “If you’re looking for a healthy side

dish for a curry night, try adding spice to the
humble cabbage.”

greek, curry leaves, red chili, ginger, turmeric and chilli powder, but does not
have a liquid sauce. If you view the consistency of the dish as an important
component of the concept of a “curry”, then our measurement strategy fails to
capture that, and this could be a problematic source of measurement error for
some applications.

Fortunately, this is not a problem for assessing whether Alison Roman’s
“Spiced Chickpea Stew With Coconut and Turmeric” is a curry or not, as it
definitely has the appropriate consistency. Of the herb and spice indicators in
the measurement model we just developed, the recipe includes garlic, ginger,
red pepper, black pepper, turmeric, and mint. The coefficients for these in our
measurement model are:

coef se

mint -1.94 0.83
black_pepper -0.18 0.21
red_pepper -0.14 0.47
garlic 0.41 0.22
ginger 0.55 0.24
turmeric 0.99 0.25

Turmeric is a classic (sometimes definitional) curry spice, but none of the
other spices in the recipe are strongly indicative of a curry, while the presence

https://en.wikipedia.org/wiki/Bunny_chow
https://en.wikipedia.org/wiki/Bunny_chow
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of mint is strongly counter-indicative of a curry. When we aggregate these
coefficients, we get a score of -5.39, which is actually slightly lower than the
mean -5.35 and median -5.07 scores for the entire recipe archive. Only one of
the 147 recipes with “curry” in the name scores lower than this on our measure,
and there is a strong argument that the recipe in question, “Smoked haddock
fish cake with curry mayonnaise and watercress” is a false positive in our
training data rather than a real curry.

Much appears to turn on the inclusion of mint, which is included in Ro-
man’s recipe as a garnish, and which greatly diminishes the curry score, as mint
appears in 3.6% of the non-curry recipes in the BBC archive, but only 0.7% of
those called curries. Without the mint garnish, the recipe scores -3.45, which
is higher than 93% of the recipes in the archive, and than 29% of the recipes
actually named curries.

While mint is almost entirely absent from any of the recipes named curries
in the BBC recipe archive, and cannot be argued to be a common curry spice,
it is possible to find dishes that call themselves curries which use mint if one
looks for them. According to a website site I found using Google, “In Indian
cooking [mint] is widely used in chutneys, relishes, salads, sauces and teas”.
The inclusion of “sauces” on this list suggests that the use of mint in dishes that
would be called “curries” in English is not unheard of, but the use of mint in
Indian cuisine is focused elsewhere. Mint is more prevalent in other cuisines
that are well represented in the BBC archive, which is part of why it ends up
with such a large, negative coefficient in the model and is therefore treated as
so strongly counter-indicative of curry in our measurement strategy.

In sum, our measurement strategy suggests that Alison Roman’s recipe is
perhaps not a curry, because it includes mint, which is atypical of curries, and
is otherwise only spiced with typical curry spices to a moderate degree. You
may feel that this exercise was a bit silly, and you would of course be right.
Nonetheless, it illustrates the wide ranging applicability of the methodology
that was the focus of this chapter. There was a public controversy about what
is clearly a socially constructed concept, “curry-ness”, and we were able to
use a data set to quantitatively describe the patterns of herb and spice usage
characteristic of something being called a “curry” in the English language.

This was not meant to be a perfect measurement strategy, it has some ob-
vious limitations. As noted earlier, while spices are an important element
of the definition of a curry, there are other elements like the presence of a
gravy/sauce that are not captured by this measurement strategy. This exercise
also highlights the importance of carefully considering the training data set (the
BBC recipe archive is not the only one that could be used), the “gold-standard
measure” of the concept (the use of the word “curry” in the title clearly leads to
both false positives and false negatives with respect to a typical understanding
of the concept) as well as the set of indicators (one could include ingredients
other than herbs and spices, or other features of the preparation). Would co-
conut milk be indicative of a curry had it been included in the set of indicators?

https://secretindianrecipe.com/about/mint


pragmatic social measurement 159

There is room for improving this measurement strategy along all of these
dimensions, if one were sufficiently motivated to do so.

8.6 Conclusions

The basic idea discussed in this chapter is that sometimes we can use an exist-
ing measure of a concept (known for some units) to learn how to use a set of
indicators to generate new measures of that concept (which can be constructed
for additional units). This idea can be implemented with basic regression meth-
ods, but it also can benefit from more advanced methods that are useful to be
aware of for certain applications.

In the last example in the chapter, I used a Bayesian logistic regression to
avoid overfitting the data in a case where there were a large number of indica-
tors, many of which appeared only rarely. This is an example of regularization,
a more general idea that is widely applied in machine learning and predictive
applications. Regularization makes sense in applications where there are a large
number of features, and one is concerned with out-of-sample predictive per-
formance. There are a large number of relevant methods that implement this
concept in various ways, including lasso regression, ridge regression, elastic net re-
gression, least angle regression as well as Bayesian estimation analogues to these.
The details of these are beyond the scope of this text, but the fact that they are
useful in the set of cases where there is a relatively large feature set is not. For
more information about these, see the very good machine learning textbooks
by James et al. (2013) and Hastie et al. (2009), the former is more accessible and
the latter more comprehensive.

Another set of tools that are useful for validation of these measurement
models are cross-validationmethods, which are covered in most machine learn-
ing texts. Cross-validation simulates out-of-sample predictive performance
by fitting models on subsets of the data and evaluating fit using the withheld
observations. This facilitates assessment of which models will predict best
out-of-sample, as opposed to within-sample, where more flexible/complicated
models always fit better. When considering (as we mostly failed to do in the
examples here) whether it makes sense to complicate a regression model for
purposes of better describing the relationship between indicators and the
training data, it is important to protect against overfitting.

https://en.wikipedia.org/wiki/Regularization_(mathematics)
https://en.wikipedia.org/wiki/Lasso_(statistics)
https://en.wikipedia.org/wiki/Tikhonov_regularization
https://en.wikipedia.org/wiki/Elastic_net_regularization
https://en.wikipedia.org/wiki/Elastic_net_regularization
https://en.wikipedia.org/wiki/Least-angle_regression




9
Supervised Scale Measurement using Linear Indices

In the last chapter, we considered measurement problems where we had a
“training” dataset with a pre-existing measure of the target concept (or at
least something close to that). Our goal was to use a set of other variables,
indicators, to predict this quantity so that we could then do out-of-sample
prediction (measurement) for units where we did not have that pre-existing
measure. While a wide variety of regression models could be used to estimate
the relationship between these indicators and the target concept, the most basic
version of this used a linear regression to generate a measure that was a linear
function of the indicators.

In this chapter, we consider problems where we again want to use a set of
indicators to measure a target concept, but where we lack the pre-existing
measures for some units (the training data) that would enable us to estimate
how the indicators relate to the target concept. Thus, if we want to use those
indicators to form a measure, we need some other way of justifying a choice
of structure (additive or otherwise) and any needed coefficients. This is the
problem of “index construction”.

There are a very large number of indices1 that purport to measure different 1 “Indexes and indices are both accepted and
widely used plurals of the noun index. Both
appear throughout the English-speaking
world, but indices prevails in varieties of
English from outside North America, while
indexes is more common in American and
Canadian English. Meanwhile, indices
is generally preferred in mathematical,
financial, and technical contexts, while
indexes is relatively common in general
usage.” https://grammarist.com/usage/
indexes-indices/

social science concepts. The first year that I ran a course on the topic of mea-
surement, one of the assignments was for students to identify a measure and
critique it. Here are 15 of the country-level measures that they found, most of
which are linear indices of the type discussed in this chapter.

• Fragile States Index (Fund for Peace)
• Global Liveability Index (The Economist Intelligence Unit)
• Human Capital Index (World Bank)
• World Press Freedom Index (Reporters without Borders)
• Global Gender Gap Index (World Economic Forum)
• Euro Health Consumer Index (Health Consumer Powerhouse Ltd)
• Democracy Index (The Economist Intelligence Unit)
• Freedom House Index (Freedom House)
• Polity Scores (Polity Project)
• Global Terrorism Index (Institute for Economics and Peace)

https://grammarist.com/usage/indexes-indices/
https://grammarist.com/usage/indexes-indices/
https://fragilestatesindex.org
http://www.eiu.com/topic/liveability
https://www.worldbank.org/en/publication/human-capital
https://rsf.org/en/ranking
https://www.weforum.org/reports/gender-gap-2020-report-100-years-pay-equality
https://healthpowerhouse.com
http://www.eiu.com/topic/democracy-index
https://freedomhouse.org/countries/freedom-world/scores
https://www.systemicpeace.org/polityproject.html
http://visionofhumanity.org/app/uploads/2019/11/GTI-2019web.pdf
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• Global Peace Index (Institute for Economics and Peace)
• Global Health Security Index (Nuclear Threat Initiative, Johns Hopkins
Center for Health Security & the Economist Intelligence Unit)

• Corruption Perception Index (Transparency International)
• Index of Economic Freedom (Heritage Foundation)

Where do these indices come from? How can/should the choices about how
to structure them be justified? Many such indices are additive with equal co-
efficients/weights on different indicators, simply because their authors had no
good justification for non-additivity or for any particular choice of unequal
coefficients/weights. You might find either of these assumptions—additivity
and equal weighting—troubling in general or in particular applications. This
chapter aims to give you the tools to appropriately assess these kinds of as-
sumptions and do better, where possible. In these cases, we have to figure
out how to put the indicators together into a measure ourselves, via relevant
“expertise”. Thus this chapter is in large part about techniques for eliciting
expertise in usable forms, whether from the analyst or from other experts.

Many of these techniques are informal “face validity” checks regarding the
implications of the mathematical construction of the index, and what it implies
about the equivalence of different ways of achieving the same index values
through combinations of indicator values. We also discuss how it is possible
to use such validation checks to create training data sets which can be used to
estimate the appropriate structure of the index. This is a way of quantifying the
relevant expertise held by subject matter experts, and extends ideas discussed
previously in Chapters 7 and 8.

9.1 Example: Olympic Medal Tables

Every four years, when the summer Olympics are held, newspapers and media
organisations around the world present medal tables that report the total gold,
silver and bronze medals won by athletes of each country. Usually these are
sorted to list the most successful countries at the top, but different media or-
ganisations choose different ways to sort the table. In the US it is conventional
to sort by total medals (gold plus silver plus bronze), in the UK it is conven-
tional to sort by gold medals, breaking ties with the silver medal count, and
then the bronze medal count if necessary. In 2020, this meant that the US sat
atop the medal table in US media throughout the Olympics, whereas in the
UK, China was listed top until the final day when the US (39 gold, 41 silver, 33
bronze) edged past China (38 gold, 32 silver, 18 bronze) at the top of the table by
gold medals.

These metrics on which the medal tables are being sorted are themselves
examples of linear indices, the subject of this chapter. For country 7, the “medal
table index” ;7 is defined

;7 = V6 · 67 + VA · A7 + V1 · 17

http://visionofhumanity.org/app/uploads/2019/07/GPI-2019web.pdf
https://www.ghsindex.org
https://www.ghsindex.org
https://www.transparency.org/en/cpi
https://www.heritage.org/index/
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where 67 is the number of gold medals won by country 7, and A7 and 17 are
the number of silver and bronze, respectively. Sorting by total medals means
sorting by a measure ;7 where V6 = VA = V1. Sorting by gold (and then using
the other medals only to break ties) means sorting by a measure ;7 where
V6 � VA � V1.

The decision about how to sort the table is implicitly an act of measure-
ment. What are we trying to measure when we sort an Olympic medal ta-
ble? The concept being measured is something like “aggregate success in the
Olympic competitions”. Note that there are many different concepts we could
choose to measure here, and by looking at “aggregate” success in terms of
medal counts we are already foreclosing some quantities that we could have
chosen to measure instead.2 But even given these constraints on the problem, 2 There is no adjustment for the population

size of the countries and all medals are
equally important, whether they come in
a large team sport or an individual sport,
whether they come in a popular event
or one of the most obscure. In 2020, San
Marino easily led the Medals Per Capita
table, with 3 medals (two in trap shooting,
one in wrestling) and a population of 33,931,
far ahead of any other country (GB averaged
about one medal per million population,
and the US one medal per three million
population).

there are various other proposals that have been made for how to aggregate the
medal counts 67, A7, and 17. One of these is V6 = 5, VA = 3, V1 = 1. The argu-
ment for this arrangement is that it respects the key axiom that gold is better
than silver is better than bronze, but also that it is a bit better to win a single
gold than to win a silver plus a bronze. That said, one could clearly disagree
with these weights: does it make sense that two silvers are better than one gold
while three bronzes are only as good as a silver? Arguing about these kinds of
questions is one of the many minor traditions associated with the Olympics.

This might seem a silly example, but the UK has spent a lot of money in re-
cent years supporting Olympic athletes. “Team GB’s 67 medals won. . . in Brazil
[2016] cost an average of £4,096,500 each in lottery and exchequer funding over
the past four years.” This works out to £1.09 per year per Briton. Over the pe-
riod from 1996 to 2020, this money has been allocated explicitly to maximise
the medal count, with money disproportionately spent on athletes preparing
for events where medals are more likely to be won, and where the required
investments are smaller. This strategy, including increased funding levels, has
been highly successful in increasing the UK’s medal count. UK Sport funding
rose from £5m per year in the run up to the 1996 Olympics (1 gold, 8 silver, 6
bronze) to more than £65m per year in the run up to the 2016 Olympics (27 gold,
23 silver, 17 bronze).3 3 Note that spending per medal has risen

substantially, so the targeting of events where
medals are more likely to be won is only part
of the story. There are decreasing marginal
returns in medals to increasing expenditure:
there are only so many strong athletes in a
given country and only so many medals to be
won in the Olympics.

Recent modifications to the funding regime in 2019 have not changed this
approach fundamentally, but rather have aimed to take a longer time hori-
zon, increasing funding also for sports/athletes where success could come
in the Olympics after the most immediate one. “The UK Sport chair, Dame
Katherine Grainger, insisted the organisation’s main focus would still be to
win as many medals as possible. ‘People still believe in our principal objective
of success in Olympic and Paralympic Games,’ the London 2012 rowing gold
medallist said. ‘What we heard quite loud and clear from the public is they have
not had enough yet. They want more. Our aim is to pursue more medals by
more medallists in more sports.’ ” It may be that the strategy to maximise total
medals is not very different than the strategy to maximise gold medals: which
athlete/team wins gold among the set of strongest competitors is difficult to

https://medalspercapita.com
https://www.bbc.co.uk/sport/olympics/37150155
https://www.bbc.co.uk/sport/olympics/37150155
https://www.bbc.co.uk/sport/olympics/37150155
https://www.theguardian.com/sport/2019/feb/12/uk-sport-no-compromise-funding-olympics
https://www.theguardian.com/sport/2019/feb/12/uk-sport-no-compromise-funding-olympics
https://www.theguardian.com/sport/2019/feb/12/uk-sport-no-compromise-funding-olympics
https://www.theguardian.com/sport/2019/feb/12/uk-sport-no-compromise-funding-olympics
https://www.theguardian.com/sport/2019/feb/12/uk-sport-no-compromise-funding-olympics
https://www.theguardian.com/sport/2019/feb/12/uk-sport-no-compromise-funding-olympics
https://www.theguardian.com/sport/2019/feb/12/uk-sport-no-compromise-funding-olympics


164 benjamin e lauderdale

predict even on the day of the event. However the choice to maximise medals,
as opposed to other criteria, is potentially very consequential if you are going
to aggressively spend money to achieve that goal.

9.2 Defining a Linear Index

An index is a composite statistic that is formed by aggregating a set of indica-
tors into an interval-level (but not necessarily continuous) measure.4 Exactly 4 Only in rare cases is it possible for an

index constructed in this way be considered
ratio-level.

how the aggregation ought to be done requires justification. In practice many
indices are linear, additive functions of the following form, where the value of
the index ;7 for unit 7 as a function of various indicators 8 is given by:

;7 =
∑
8

18 · �7 8 (9.1)

This sort of linear index is sometimes called a “sum score”: the score for
unit 7 is the sum of scores 18 on a set of items �7 8.

Obviously Equation 9.2 looks like the linear regression equations we con-
sidered in the last chapter, but we are using 1 instead of V because we lack any
training data ;7 to fit a model to learn the coefficients.5 Thus, the task of this 5 We cannot even pretend that there is a

generative model here.chapter is to think about how we specify the values of 1, that will predict the
target concept ` as well as possible, without being able to fit a regression to
estimate the coefficients that best predict known values of ; because there are
none.

This type of index is sometimes described in terms of “weights” E8 rather
than “coefficients” 18, but this tends to come to the same thing mathematically.
Describing these as “weights” makes sense in cases where the indicators are
standardised in some way (either to have mean zero and standard deviation 1 or
to range from 0 to 1) and the weights E8 are all positive (E8 ≥ 0∀8) and add to 1
(
∑
8 E8 = 1). This is a special case of Equation 9.2, where the 18 are the weights,

and satisfy these constraints.
Very commonly, this form is nested, such that �7 8 is itself a sub-index, con-

structed linearly from several further indicators. If the index is linear and the
sub-indices are also linear, this is mathematically equivalent to simply defining
the index in terms of the underlying indicators in the sub-indices. Working
with sub-indices can nonetheless be useful in facilitating the process of concep-
tualization, as seen in some of the examples later in this chapter.

Indices are also sometimes described in terms of “points”, particularly in
cases where all the indicators are categorical. In such cases, different levels of
the indicators are associated with different positive or negative point totals,
and are added to yield a “score”. This too is a special case of Equation 9.2,
with the point totals being the 18 and the indicator variables being full sets of
dummy variables for each categorical variable.
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9.2.1 Requirements

A fundamental feature of this type of additive index is that it purports to be
an interval-level measure. In order for an index to actually be an interval-level
measure, equal differences in the index value must be equivalent with respect
to the underlying concept. This means that the scale construction must cor-
rectly space the levels for categorical indicators and apply appropriate trans-
formations of continuous variables. Indicators must then have appropriate
coefficients such that like changes in the measure correspond to like changes
in the target concept. The selection and transformation of indicators as well as
how they are weighted by the 1 coefficients must be done carefully in order to
achieve a measure that is credibly interval level.

The linear structure of the index means that changes in different indicators
can be exchanged with one another. Increasing �1 by Δwill change the index
by 11Δ1. But you can also increase the index by the same amount by increasing
�2 by Δ2 =

11Δ1
12

. This is most obvious if 11 = 12: if the indicators have equal
coefficients/weight, you can achieve the same change to the index by changing
either indicator by the same amount Δ1 = Δ2.

This implies that one ought to be comfortable with all such equivalences.
This connects back to the discussion of unit analysis and linear regression dis-
cussed in Chapter 6.2.2. The 1 coefficients in the index are, by the very nature
of a linear index, statements that one unit of indicator 8 translates to 18 units of
the target concept. Checking indicator equivalence means being comfortable
with these statements, when they are made explicitly. Do you think that a unit
with �1 = �∗1 + Δ1 and �2 = �∗2 has the same value of the target concept as a
unit with �1 = �∗1 and �2 = �∗2 +

11Δ1
12

? Linear scale development should involve
an explicit validation strategy that involves checking whether these tradeoffs
are plausible, across a range of indicator pairs and representative indicator
differences.

If an index is successfully measuring the target concept, the ;̂ values for
any pair of units 7 and 7′ should appear correct, in relative terms. This means
that we should be able to look at units that have similar scale values, deriving
from different combinations of indicator values, and feel comfortable with
the claim that they ought to be viewed as similar according to the underlying
concept. Similarly, we ought to be able to look at units that have different
scale values, and feel comfortable with the claim that they are different in the
direction that their scale values are different, even if we cannot easily assess the
magnitude of that difference. Again, as with the coefficient comparisons, linear
scale development should involve an explicit validation strategy that involves
checking whether these comparisons are plausible, across a range of similar
and dissimilar unit pairs.

These requirements create a number of opportunities to refine and validate
an index, which we will discuss later. These requirements can be stated either
in terms of whether the relative values of the 18 coefficients/weights on dif-



166 benjamin e lauderdale

ferent indicators are correct as well as in terms of whether different units are
correctly ordered.

9.2.2 Selecting Indicators

How do we choose which indicators to put into our linear index? Here it is
useful to think by analogy to the regression-based analysis that we discussed
in the preceding chapter. Ideally we would want to include any indicators
that would have non-zero coefficients, were we able to do that sort of training
exercise on some existing measure of the concept we want to measure. Non-
zero coefficients imply not only that an indicator is associated with the concept
of interest in the relevant population of units, but also that it is conditionally
associated with that concept given the other included indicators. Sometimes
there are multiple available indicators that are all very highly correlated,6 6 It is also the case that, even if you did have

training data, you would struggle to estimate
which of these highly multicollinear variables
was most predictive of the concept via a
regression.

which means they carry largely the same information and the consequences
of choosing one versus another may be very slight.7 Excluding an indicator

7 It also may not be slight, if the differences
between the indicators are closely associated
with your intended application.

that is in fact associated with the concept is thus a more serious problem to
the extent that there are not other indicators which the indicator is correlated
with, as such indicators can carry information about that component of the
target concept in its absence.

Having established the principle of trying to identify indicators that are
conditionally associated with the target concept, there are many strategies one
could follow for actually picking these. One strategy, suggested by Munck and
Verkuilen (2002), involves iterative decomposition of the target concept. There
are three steps:

1. Conceptualization - identify the attributes that constitute the concept and
how they are interrelated

2. Measurement - find measures of the constituent attributes
3. Aggregation - combine the measures of the attributes in a way implied by

the conceptualization

So, for example, if you are trying the measure which countries are more or
less “globalised”, your initial step might be to break down the concept into sub-
components of “economic globalisation”, “social globalisation”, and “political
globalisation” (Gygli et al., 2018). Crucially, this logic can be applied recursively.
At step 2 you may discover, as in this example of measuring globalisation, that
there is still not an available measure for an attribute (eg economic globalisa-
tion) that constitutes one part of the target concept. You must then apply the
entire process to constructing that measure of the attribute, in order to be able
to include it in your overall measure of the target concept. We will see some
examples of this below.

One of the useful distinctions made by Munck and Verkuilen (2002) and
others is between measurement strategies that are maximalist and measure-
ment strategies that are minimalist. A minimalist measurement strategy uses a

https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalisation-index.html
https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalisation-index.html
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relatively parsimonious definition of a concept and relatively few indicators. A
maximalist measurement strategy uses a more inclusive definition of a concept
and relatively many indicators.

One way to think about this tradeoff is by thinking about the kinds of mea-
surement errors that you are likely to introduce with either type of definition.
Minimalist approaches particularly risk missing aspects of the concept that
you want to measure, maximalist approaches particularly risk introducing un-
wanted elements of other concepts. If we recall the graphical representation of
the measurement process from Chapter 2, we are considering a comparison of
the minimalist approach on the left (one indicator) with the more maximalist
approach on the right (three indicators). What is the tradeoff that we face in
choosing between these?

Let’s consider the case of a single indicator measure first. If you use a single
indicator to measure a concept, the risk of introducing bias comes from the
other factors (O) that shape the values of the indicator (I1) besides the concept
of interest (C). With multiple indicators, the risk comes from all the other
factors (O) that shape the values of any of the indicators (I1, I2, I3, etc) besides
the concept of interest. Why, then, would you ever want to use additional
indicators?

If you start with a single indicator, you have a limited number of potential
sources of bias, but those biases are potentially very large in magnitude if some
of the other factors that shape that indicator besides your target concept are
strongly associated with the outcome/treatment variable you are associating
your measure with. As you add more indicators, there are more different po-
tential sources of bias because there are additional other factors (O) shaping
the new indicators, but because there are more of them, the magnitude of the
biases from each one are smaller, so long as the “other factors” that influence
your various indicators are not correlated with one another.

With a sufficiently large number of indicators, it becomes difficult or impos-
sible to reason about likely sources of correlated measurement error. A virtue
of minimalist strategies is therefore that they enable you to think critically
about likely sources of correlated measurement error. A virtue of maximal-
ist strategies is that they may mitigate the magnitude of likely errors because
each source of measurement error has lower weight in the measure and these
sources of error cancel out in expectation, to the extent that they are not posi-
tively correlated with one another.

Sometimes adding additional indicators makes little practical difference,
because the indicators are highly correlated with one another. Ogwang (1994)
showed that the life expectancy indicator used in the calculation of the Human
Development Index (HDI) predicted 88% of the variation in that index. Ogwang
argues that, particularly in a context where a single indicator predicts most
of the relevant variation, there are advantages to avoiding indices entirely, as
it obviates the need to make transformation and weighting decisions like the
ones that are discussed in the sections below. This is the extreme form of the
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minimalism argument (which does not mean it is wrong).

9.2.3 Transforming Indicators

Once you have selected indicators, you need to consider whether they should
be transformed from � to �∗ in some way in order to satisfy the requirements
of an interval-level measure. For continuous indicators, this may require trans-
formation. The most commonly used transformations are log transformations,

�∗ = log(�)

standardizations,

�∗ =
� −;40<(�)

A3(�)
and linear rescalings to a specified range [;7<,;0F].

�∗ =
� −;7<

;0F −;7<
For example, the Human Development Index includes per capita gross

national income (GNIpc) as one of its three components. However, this is
not entered into the index directly, but rather it is both log transformed and
rescaled:

Income Index =
log ($GNIpc) − log ($100)
log ($75000) − log ($100)

This rescaling means that the index is 0 when GNIpc is $100 and 1 when
GNIpc is $75000, and increases linearly in between with the log of income.

This transformation reflects a substantive assessment that income matters
on a log scale rather than a linear scale when one is thinking about the concept
of “Human Development”. Thus, when GNIpc is $10,000, the Income Index
≈ 0.70, which is much closer to the value that the index achieves at $75,000
than it is to the value it achieves at $100. The log transformation is appropriate
if it is the case that one thinks that multiplication of the indicator maps into
addition for the concept of interest. That is, the difference in “Human Develop-
ment” between an income of 2F and F is the same as the difference in “Human
Development” between an income of 4F and 2F, not 3F and 2F.

For continuous indicators, one has essentially the entire universe of func-
tions to potentially choose from, but in practice the most commonly used
transformations are log transformations and linear rescaling of endpoints, both
of which appear in the above example. For categorical indicators, transforma-
tion simply means assigning a numerical value, ie a number of “points”, to each
level of the variable.

9.2.4 Specifying Indicator Coefficients

Where transformation of indicators determines how different levels of the
same indicator are associated with the target concept, specifying the indicator

https://en.wikipedia.org/wiki/Human_Development_Index
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coefficients determines the relative (partial) associations of different indicators
with respect to that concept. Recall that our linear index looks like this:

;7 =
∑
8

18 · � 8 (9.2)

How do we pick the 1 coefficients if we cannot estimate them using some
training data for ;?

There are a few common strategies here, all of which immediately present
the challenge that it is difficult to justify specific values for the 18:

1. Equal weighting (11 = 12 = . . .)
2. Analyst-specified weighting
3. Expert-specified weighting

The equal weighting assumption might strike you as particularly troubling.
To continue the linear regression analogy, equal weights are like assuming
a priori that all the betas in your regression model should be the same. This
might strike you as crazy, but people have in fact made the argument for equal
coefficients by assumption in regression applications where there is not enough
data to estimate regression coefficients reliably (Graefe, 2015). Note that equal
weighting pushes a lot of the work back to the previous step of appropriately
transforming the indicators. Dimensional analysis dictates that, if you are go-
ing to have equal weighting, the indicators must all be on comparable scales,
such that adding them can be a meaningful operation. This can be achieved
by standardization or by transformation to something resembling the quan-
tile/percentile in the observed distribution (that is, only either a 0-1 or 0-100
scale). Equal weighting does not require you to make any further decisions
beyond whether to include indicators in the scale, and transforming them in a
way that makes them numerically comparable.

In some instances, it makes sense for the analyst (the person constructing
the measure) to specify non-equal weights. These need some justification.
Unfortunately these arguments are very difficult to make convincingly, even
for simple adjustments to weights (such as counting one indicator at twice the
weight of another). Because these are judgement calls, it often makes sense
to bring in a broader range of experts to make these evaluations wherever
possible. This strategy has been used in some large-scale measurement projects
like the Global Health Security Index as well as in one of the applications
discussed later in this chapter.

As mentioned earlier in stating the requirements of a linear index, valida-
tion comes down to confirming that a unit with � 8 = �∗

8
+Δ8 and � 8′ = �∗

8′ has the

same value of the target concept as a unit with � 8 = �∗
8
and � 8′ = �∗

8′ +
18Δ8
18′

, for all
pairs of indicators 8 and 8′. Thus, one strategy for developing a set of unequal
coefficients is to start with equal coefficients and then interrogate the analyst’s
and/or experts’ intuitions about whether the implied tradeoffs are appropriate.
Where they are not, coefficients can be increased or decreased, and the process
iterated until there are no more obvious adaptations to be made.

https://www.ghsindex.org
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9.2.5 Estimation

One way of validating an existing index (for example one using equal weights)
is to examine whether the relative values of the measure make sense for specific
units. This sort of “face validation” process simply asks whether the compari-
son “looks” reasonable: should unit 7 really be higher/lower than unit 7′ in this
concept? However, if we are comfortable using expert evaluations of this type
as the basis for validation, we can directly generate coefficients/weights from
this sort of expert evaluation of pairwise comparisons (Floridi and Lauderdale,
2018). In Chapter 7, we considered supervised learning methods for calibrat-
ing a measurement scale when gold standard data ;7 measuring your target
concept `7 was available for some units. Here, we consider a strategy for cali-
brating a set of indicators in the absence of gold standard data ;, which builds
on the idea of competition data from Chapter 7.

We assume that we are able to generate data that tells us something about
whether `7 > `7′ for specific pairs of units. If we have data like this, we could
feed it through a Bradley-Terry model to learn about units 7 and 7′ specifically.
But this would limit us to learning about the units for which we have these
comparisons. Instead, we are going to use the indicators to try to predict the
results of these competitions. In the simpler case without the possibility of ties,
we start with the Bradley-Terry model:

:=6

(
>(7 defeats 7′)
>(7′ defeats 7)

)
= U7 − U7′ (9.3)

and replace the individual unit “strengths” U 8 with linear functions of the
indicators:

:=6

(
>(7 defeats 7′)
>(7′ defeats 7)

)
= (U + V1�17 + V2�27 + · · · ) − (U + V1�17′ + V2�27′ + · · · )(9.4)

= V1 (�17 − �17′) + V2 (�27 − �27′) + · · · (9.5)

This is just an intercept-less logistic regression for unit 7 “defeating” 7′ with
predictors equal to the differences between their respective indicator values.8 8 Note that you might want to include the

intercept if you thought that there was some
reason that the units that you are calling 7 are
going to win more often than those you are
calling 7′, akin to “home field advantage” in
a Bradley-Terry model. This might happen
if your data were generated from human
responses and you worry that people will
choose the first option in the survey more
often than the second, for example.

The linear predictor from the model then provides an estimate of appropriate
coefficients for the indicators:

ˆ̀ 7 = V̂1�17 + V̂2�27 + · · · (9.6)

In order for this to work, you need to have a set of pairwise comparisons
that you think reflect the underlying concept you want to measure. The
“strength” that determines the pairwise winners needs to be the concept you
want to measure, not something else. The most obvious way to generate this
kind of pairwise comparison data is to survey people who you think have some
expertise for determining which indicator values correspond to greater levels
of the target concept, and how to trade-off those values against one another.
This approach involves conducting a conjoint experiment (Green and Rao, 1971;
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Hainmueller et al., 2014) where the respondents are provided with two profiles
of indicator values and asked to select which profile has a greater level of the
concept of interest.9 This relies on the ability of whoever is making the com- 9 Alternatively, one could provide single pro-

files of indicator values and ask respondents
to rate the profile according to the concept of
interest, but this relies on their ability to use a
consistent rating scale across many tasks, as
opposed to making consistent comparisons,
which is less demanding.

parisons to make comparisons on the basis of the concept you are interested
in.

Floridi and Lauderdale (2018) conduct a conjoint experiment in which ex-
perts on the demographic concept of productive aging are asked whether hypo-
thetical individuals who engage in varying degrees of paid work, volunteering,
grandchild care and care for sick/disabled adults are more or less produc-
tive than other such hypothetical individuals. The authors then fit an ordered
logistic regression (there is an “about the same” intermediate response) for
predicting which hypothetical individual is selected in each expert response.
The coefficients from the model are shown below, which translate directly
according to Equation 9.6 into points on the scale for each level of each activity.

The Italian and Korean aging experts put broadly similar relative weights
on different activities, but with some differences with respect to certain activ-
ities. Italian experts put greater value of grandparental care, Korean experts
put greater weight on volunteering. When the coefficient estimates are then
applied to constructing productive aging scores for the subjects of a Korean
aging survey that includes these indicators, the scores derived from different
aging experts’ conjoint responses are very highly correlated with one another.
They are especially highly correlated when comparisons are made among the
Italian coders or among the Korean coders, with somewhat lower correlations
comparing scales generated from experts from different countries. This illus-
trates an important point about this kind of weight calibration: not everyone
will have the same weights on different activities, and this may reflect differ-
ent conceptualisations of the underlying concept. If Korean and Italian aging
experts perceive different activities as differently productive, then indicator
weights calibrated on their assessments will be different, and so too will the
measures that result. In this case the differences are not very large, but in other
applications they might be.

For other concepts, it might make sense to use samples of the public to
make the comparisons. For example, Hainmueller and Hopkins (2015) describe
an experiment in which they randomise characteristics of immigrants, and ask
respondents to indicate which immigrant they would prefer to see admitted
to the United States. The analysis in that paper, as in most conjoint experi-
ments, is primarily focused on making causal claims about which attributes
of hypothetical immigrants are associated with being more or less favoured.
But another way to think about what they are doing is that they are measuring
the concept of “relative appeal of potential immigrants to existing US citizens”.
There are potential applications for such a measure. For example, one might
imagine that the experience of immigrants once they arrive in the US is related
to whether they are generally viewed more or less favourably by US citizens.
Thus, if one took the model estimates from the conjoint experiment, and con-
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Figure 9.1: Comparison of coefficient esti-
mates for Italian and Korean aging experts.
Baseline category for each type of activity is
never (for volunteering) or 0 hours per week.
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structed fitted values for real individuals, this might constitute a useful measure
of aspects of their experience once they arrive in the US.

This is a somewhat different perspective on conjoint experiments than you
may encounter in other contexts, where the focus is on enabling valid causal
inferences. The causal inference perspective on conjoint experiments is that
they use randomisation to enable estimation of a well-defined causal estimand
associated with changing individual attributes involved in the choice, averaged
over variation in the other attributes and the sample of respondents. The
measurement perspective on conjoint experiments that I am employing here
is a very literal one: such experiments enable you to measure the propensity
to be selected in the pairwise comparisons as a function of the randomized
indicators. For measurement purposes, the randomization is useful because it
allows us to explore how the measure varies across a multidimensional space
of possible indicator values, rather than for the usual reason that it enables
attribution of choice variation to particular indicators. Put differently, we are
primarily interested in ;̂ given � , not V̂.

9.3 Defining a Non-Linear Index

All of the above discussion considered linear indices, of the form:

;7 =
∑
8

18 · � 8

Of course one can also aggregate the indicators in an index in non-additive
ways, of which there are an infinite number to choose from. Additivity is
simply mathematically convenient, and therefore a widespread default. If you
think additivity is unacceptable as a baseline assumption in the absence of good
theory, I have some bad news for you about how linear regression models are
used in the social sciences. You should think of additive indices in a similar
way to how (I hope) you think of linear regression models. They are useful
“first-order” approximations to the relationship between the indicators and
the target concept. If you lack any/enough theory, a linear approximation is a
sensible place to start. It may or may not be a good place to stop.

There are a few common non-additive ways of aggregating a set of indica-
tors. These are often motivated by the kinds of axiomatic arguments that we
considered in Chapter 6. Such arguments say that the target concept ought to
respond to these changes in the indicators in a way that is incompatible with
additivity.

One definition of poverty used in the UK in the early 20th century required
that, for people to be non-poor, they must have both a bath and a garden
(Laderchi et al., 2003, p246). Assume for the moment that these were sensible
indicators at the time. What are the implications of requiring both? Requiring
both means that the poverty measure is insensitive to the difference between
having neither a bath nor a garden and having just one of those. The implica-
tions of these choices can be important not just for assessment of individuals,
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but also of populations. What if most people in more densely populated areas
have baths but not gardens and most people in non-urban areas have gardens
but not baths? Almost everyone has some of the elements of non-poverty by
this definition, but almost everyone is still defined as poor. The underlying
methodological question is how you aggregate the indicators. Requiring both
a bath and a garden is equivalent to defining non-poverty (<>) as the product
of a variable for having a bath (1 = 1 if yes, 0 if no) and having a garden (6 = 1
is yes, 0 if no): <> = 1 · 6. Additive aggregation would lead one to define a
household poverty measure as the sum of these two indicators: <> = 1 + 6.
This would mean that having a garden or a bath but not both would make you
“halfway” between being poor and not poor. Using the product rules out this
possibility.

The most widely used non-additive aggregation functions are multiplicative
(products) and variants thereof like the the geometric mean. If an additive
index is

;Σ
7 =

∑
8

18 · � 8

, then a multiplicative index typically is constructed as

;Π
7 =

∏
8

�
18

8

, with the potential for weights/coefficients to enter exponentially. This kind of
expression is easiest to understand if the � 8 are constrained to the range from
0 to 1, describing a proportion or share of a maximum possible, and the 18 are
all 1, but this is not necessary. Multiplicative aggregation is simply additive
aggregation on a log scale:

;7 =
∏
8

�
18

8

log (;7) = log ©«
∏
8

�
18

8

ª®¬
log (;7) =

∑
8

18 log
(
� 8
)

The important thing to recognise about multiplicative aggregation is that
it understands the relationship between the indicators in a fundamentally
different way than additive aggregation. Additive aggregation requires that the
different indicators have the same dimensions/units to begin with or that the
18 themselves provide the conversion to the same units, because otherwise
the addition violates dimensional analysis (recall Chapter 6). In most cases,
multiplicative aggregation will mean that the quantity that you are trying to
measure has dimensions that are a product of those of your indicators.

Put differently, additive aggregation says that the indicators are substitutes.
If you get more of one, it can replace the lack of another. Multiplicative ag-
gregation says that the indicators are complements. If you get more of one, it
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makes the amount of the others that you already have contribute more. This
is a major conceptual difference, and it is very important to think about which
aggregation model is more appropriate to a given application.

9.4 Application - UN Human Development Index

As an initial example, we begin with a relatively simple index, albeit one that
uses non-additive aggregation. We will consider the empirical consequences of
not using additive aggregation, by comparing the index to the one we would
recover using additive aggregation with the same indicators. We will also
consider the theoretical case, the conceptual case for the aggregation method
that is used.

The UN Human Development Index was first published in 1990 with the
aim of measuring human development at the country-level. The concept of
development is defined as “a process of enlarging people’s choices”. HDI incor-
porates three sub-indices, a Life Expectancy Index �!, an Education Index �� ,
and an Income Index �� . These sub-indices are defined in very minimalist ways,
with just one or two indicators (four overall). Each sub-index is defined such
that the minimum score attainable is 0 and the maximum is 1. Where !� is life
expectancy at birth, ".( is mean years of schooling, �.( is expected years
of schooling,10 and �#�>2 is per capita gross national income in purchasing 10 Mean years of schooling is among those

aged 25 and older, expected years of schooling
is a projection for those currently under 18.

power parity US dollars:

�! =
!� − 20
85 − 20

�� =
1
2
· ".(

15
+ 1
2
· �.(
18

�� =
log(�#�>2) − log(100)
log(75000) − log(100)

These rescalings are designed to place all countries in the interval [0, 1] and
in the few cases where the rescaled values exceed that range, they are censored
to the relevant extreme (this only occurs for the top end of the education and
income indices).

The formula has changed since its creation, but as of this writing HDI
aggregates these three sub-indices by geometric mean rather than additively:

��� =
3
√
�! · �� · ��

Note that at its core, this is a multiplicative aggregation.11 This means that 11 The cube root only makes sense here
because each of the sub-indices is defined in
such a way as to range from 0 to 1. Otherwise
it would not make sense to ask what an
average value of the three was, regardless
of whether that average was arithmatic or
geometric.

development is understood to arise out of jointly possessing life expectancy,
education and income. These are complementary resources which do not
substitute for one another. In the extreme case that a country completely
lacked any one of these, the resulting HDI would be 0 as well, regardless of
the values of the other two. This mathematical structure embeds a strong
substantive commitment about what meaningfully enlarges people’s choices,
the conceptualisation of development underlying the measure.12 12 Arguably this index is applying an argu-

ment about what is required for individual
human flourishing at the aggregate, which
could mask the consequences of inequality
for which countries actually put more indi-
viduals in a position of having all three of
these resources. Inequality-adjusted HDI
attempts to correct for this.

https://en.wikipedia.org/wiki/Human_Development_Index
http://hdr.undp.org/en/reports/global/hdr1990/
https://en.wikipedia.org/wiki/List_of_countries_by_inequality-adjusted_HDI
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Figure 9.2: Human Development Index
sub-indices.
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The three sub-indices are in fact all very highly correlated with one another,
in 2019 the correlation of the life expectancy index with the education index
was 0.82, the correlation of the life expectancy index with the income index
was 0.82, and the correlation of the education index with the income index
was 0.85. Figure 9.2 shows that despite having similar pairwise correlations,
the range of the life expectancy index is substantially less than the other two
indices. The lowest life expectancy index value is 0.50, while the other two
indices have minima of 0.25 and 0.28.

Notice that this is entirely a result of the way that the sub-indices were
defined. All three sub-indices are linear rescalings of some original indicators.
The purpose of these rescalings is to make the three indices comparable in
scale, such that they can be aggregated meaningfully by geometric mean. Thus,
the rescaling define a minimum level and a maximum level; the levels at which
countries have entirely failed to achieve any development and the levels at
which they have achieved “full” development. The minima have been set, by
the analysts who created the index, at a life expectancy of 20 years, 0 years of
education and an income of $100 per person. The maxima have been set at a
life expectancy of 85 years, 15 mean years and 18 expected years of education,
and an income of $75,000. The minimum observed life expectancy of any
country in 2019, according to the indicators used in the HDI, was found in
the Central African Republic which had a life expectancy of 52.8 years. The
minimum education index value was that of Niger, which had 4.3 mean years
of schooling and 7.6 expected years of schooling. The minimum income index
value was that of Burundi which had a per capita GNI of $659.7 (purchasing
power parity). The minimum observed values for education and income are
simply much closer to the value that the index specifies as the zero point than
is the minimum observed value for life expectancy.

This is not necessarily wrong, but it is a choice by those who created the
index. Raising the floor value of 20 in the life expectancy rescaling to a higher
value would have the effect of stretching out the variation in the life expectancy
index to cover more of the range from 0 to 1. To achieve a similar range to the
other two indices, a floor value around 40 would be required. But the decision
of whether to do this needs to be made on substantive grounds. It could just be
the case that there is less variation across countries in the contribution of life
expectancy / health to their state of development, than there is for education
and income. That is the appropriate grounds on which to adjudicate the scaling
of the different indices.

As noted earlier, the three sub-indices are all fairly strongly correlated with
one another because countries tend to have all three of these things together or
lack all three. This means that, as suggested by Ogwang (1994), one could simply
substitute life expectancy in some applications. But it is important to recognise
that the empirical fact that one of these could largely stand in for the whole
index does not really undermine the theoretical argument for conceptualising
development in terms of all three component sub-indices. Indeed, perhaps the
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reason that countries tend to end up with similar values for all three is that it
does not make much sense to maximise any one at the expense of the others,
which is in some sense the point of the conceptualisation of development as
the product of all three.

9.5 Application - Immigrant Integration Index

The second index that we are going to look at in detail is a measure of the
extent to which individual immigrants in a society are “integrated”: the Immi-
gration Policy Lab (IPL) Integration Index developed by researchers at Stanford
and ETH Zurich. Harder et al. (2018) measure this concept via a survey instru-
ment that asks a series of questions related to the concept of integration. The
goal here is not so much to measure the average level of integration across a
full population (although that is one potential application) but to measure vari-
ation in the extent of integration at the individual level so that the relationship
of integration to other attributes of individuals can be studied.

9.5.1 Conceptualisation

What is immigrant integration? The authors carefully define what they mean
by integration, and how it is different from assimilation:

“In developing our measure, we defined integration as the degree to which
immigrants have the knowledge and capacity to build a successful, fulfilling life
in the host society”

“Our definition distinguishes integration from assimilation, the latter of which
requires immigrants to shed their home country’s culture in favor of adopting
the cultural practices of the host country’s dominant group. In our view, immi-
grants need not shed their own culture to live successful and fulfilling lives in
the host country. Therefore, our measure focuses exclusively on capturing the
degree to which immigrants have acquired the knowledge and capacity to build
successful lives rather than the degree to which they have shed their cultural
heritage.”

“For example, to capture linguistic integration we measure only whether immi-
grants have acquired skills in the host country’s or region’s dominant language,
but we are agnostic as to whether immigrants still use their home country’s
language. In contrast, a measure of assimilation would by definition take both
aspects into account.”

The authors identify six component dimensions of integration, which are
psychological, economic, political, social, linguistic, and navigational integra-
tion. One can immediately see that that is a maximalist definition, it is intended
to capture the variety of ways in which people might or might not be inte-
grated into a society. One implication of this is that the scale already includes
dimensions and indicators that one could imagine being interested in their
relationship to “integration”. For example, it includes measures of income and
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employment, which means that you would not want to use the entire index
to try to describe variation in income or employment, although you could use
parts of the index to do so. Reflecting the fact that their measure is very general
and includes many things, the authors include substantial analysis of the ex-
tent to which these different dimensions of integration are associated with one
another.

9.5.2 Indicators

All of the indicators for this integration index are based on survey questions,
which are coded or recoded onto 5 point scales. These are the items, with the
first two indicators listed for each dimension constituting the short form of
the survey instrument. The instrument is given in the form that the authors
propose for the United States, but is designed to be cross-nationally valid with
appropriate changes in the relevant proper nouns.

• Psychological

1. How connected do you feel with the United States? (5pt scale)
2. How often do you feel like an outsider in the United States? (5pt scale)
3. Thinking about your future, where do you want to live? (5pt scale)
4. How often do you feel isolated from American society? (5pt scale)

• Economic

1. Household income (recoded to 5pt scale)
2. Employment (recoded to 5pt scale)
3. Ability to handle unexpected expenses (recoded to 5pt scale)
4. How satisfied are you with your current employment situation? (5pt scale)

• Political

1. How well do you understand the important political issues facing the United
States? (5pt scale)

2. In the last 12 months, how often did you typically discuss major political
issues facing the United States with others? (5pt scale)

3. 1 + number of correct answers to four political knowledge questions (5pt
scale)

4. There are different ways of trying to improve things in the United States or
help prevent things from going wrong. During the last 12 months, have you
done any of the following? (recoded to 5pt scale)

• Social

1. In the last 12 months, how often did you eat dinner with Americans who are
not part of your family? (5pt scale)

2. Please think about the Americans in your address book or your phone con-
tacts. With how many of them did you have a conversation - either by phone,
messenger chat, or text exchange - in the last 4 weeks? (5pt scale)
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3. People sometimes participate in different kinds of groups or associations. For
each group listed below, how often do you participate in a group activity? (5pt
scale)

4. Many people help each other with everyday favors, such as getting rides,
borrowing a little money, or babysitting. In the last 12 months, how often
have you provided such favors to Americans? (5pt scale)

• Linguistic

1. I can read and understand the main points in simple newspaper articles on
familiar subjects. (5pt scale)

2. In a conversation, I can speak about familiar topics and express personal
opinions. (5pt scale)

3. I can write letters about my experiences, feelings, and about events. (5pt scale)
4. I can listen to and understand the main points in radio or TV programs

about familiar subjects. (5pt scale)

• Navigational

1. In this country, how difficult or easy would it be for you to do each of the
following? See a doctor.

2. In this country, how difficult or easy would it be for you to do each of the
following? Search for a job.

3. In this country, how difficult or easy would it be for you to do each of the
following? Get help with legal problems.

4. 1 + number of correct answers to four civic knowledge questions (5pt
scale)

9.5.3 Aggregation

Since each of the six dimensions has either two or four indicators, and all
of the indicators are on five point scales that range from a least integrated
to a most integrated option, aggregation is relatively easy mathematically.
Nonetheless, it is worth pausing to think about what is assumed by adopting
equal weighting, as the authors do:

A score between 1 and 5 points is computed for each question such that there is
a maximum score of 60 across all six dimensions for the IPL-12 and 120 for the
IPL-24. The measure is then rescaled to range from 0 to 1 in increasing levels of
integration.

Here are some response differences that all correspond to two point shifts
towards integration on a single item from each of the dimensions:

• Responding that you feel a “very close” connection to the United States as
opposed to a “weak connection”.

• Responding that your household income is between 100% and 133% of US
median income as opposed to between 33% and 66% of US median income.
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• Responding that you understand the important political issues facing the
United States “Well” as opposed to “Not well”

• Responding that you eat dinner with Americans who are not part of your
family “once a week” as opposed to “once a year”

• Responding that you can read and understand the main points in a simple
newspaper article on a familiar subject “Very well” as opposed to “Moder-
ately well”

• Responding that seeing a doctor is “very easy” as opposed to “neither diffi-
cult nor easy”

Whether one wants to treat all these differences as identical is debatable (as
the authors acknowledge) and for particular applications it may make sense
to adopt different approaches to aggregating the indicators (Harder et al.,
2018, p.11484). The decision to do so depends on the extent to which you are
comfortable or uncomfortable with the differences above (and the many more
you could similarly construct) being given equal weight in terms of the scale.

9.6 Application - National Poverty

The concept of poverty is good example of a difficult-to-measure concept, on
which there is an extensive academic research literature. In 2019 the UK gov-
ernment adopted a new approach to publishing poverty statistics. The previous
approach was based solely on income, but a Social Metrics Commission report
concluded that these measures gave a misleading portrait of the “lived expe-
rience of poverty”. One consequence of this, the authors of that report argue,
is that published statistics substantially overstated the prevalence of poverty
among those past working age. Pensioners are relatively likely to have low
incomes but also are relatively likely to have substantial assets such as owning
their own home and to have few regular financial obligations. Even adjusting
for the number of people in the household, people on comparable incomes
with children and limited assets may experience a much more precarious exis-
tence, both financially and more generally. Given this, what is the right way to
measure poverty? Note that this distinction turns, critically, on what you want
the concept to mean. Is poverty simply low income? Or is it something broader
than that? This is a question of conceptualisation.

What indicates whether an individual is poor? Is poverty absolute or rel-
ative to other people in the same locality? Same region? Same country? In
all countries? Is poverty unidimensional (just about money) or is it multidi-
mensional (about money and other things)? Is the poverty level of a country
the proportion of individual people in poverty in that country, or is it more
complicated than that? We are mostly going to focus on the Multidimensional
Poverty Index developed at Oxford and used by the United Nations, but with
reference to other approaches as well.

https://www.ft.com/content/10ee615c-788f-11e9-bbad-7c18c0ea0201
https://www.ft.com/content/10ee615c-788f-11e9-bbad-7c18c0ea0201
http://socialmetricscommission.org.uk/MEASURING-POVERTY-FULL_REPORT.pdf
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9.6.1 Conceptualisation

The first step towards any kind of measure of country-level poverty is to be
clear about which conceptualisation of poverty we want to employ. There
are at least four approaches that have been discussed in the relevant academic
literature (Laderchi et al., 2003), which I will very briefly outline here.

1. TheMonetary Approach: Do people lack enough money?
2. The Capability Approach: Do people lack the range of capabilities they need

to adequately function in the world?
3. The Social Exclusion Approach: Do people suffer exclusion from full partici-

pation in society?
4. The Participatory Approach: Do people think they are poor?

I have simplified each of these down to an implicit question in order to
make the point that each conceptualization of poverty is based on answering a
different question that corresponds to a different idea of what poverty is. Notice
that moving from the concept of “poverty” to any of these conceptualizations
pushes you towards different strategies for measuring the concept. For the
monetary approach, you are going to need a definition of how much is enough
money and some approach to measuring how much money people have/earn.
For the capability approach, you are going to need to specify what capabili-
ties are required to function “adequately” and some approach to measuring
whether people have them. For all of the approaches, however you decide to
measure individual-level poverty, you have to decide how that is translated
to country-level poverty, both conceptually and practically. The former is
likely to involve some decision about whether country-level poverty is more
complicated than simply the proportion of people meeting the definition of
individual-level poverty. Practically, measurement is likely to involve some
kind of representative national survey. The examples we will look at are all
based on assessing whether individuals meet a definition of poverty, and then
using the national survey to assess what proportion of individuals meet the
definition in the country overall.

You might notice that the monetary approach lends itself to more minimal-
ist measurement strategies. The most commonly used country-level measure
of poverty is that of the World Bank, which started out using the purchasing
power parity equivalent of one US dollar per day as the international poverty
threshold, and which is more recently $1.90 in 2011 purchasing power parity
dollars. It is not quite right to say this is easy to measure—there are compli-
cations associated with conducting surveys in some countries, with putting
monetary values on non-monetary transactions, implementing purchasing
power parity adjustments across countries, etc—but adopting an income or
consumption-based monetary threshold does make the measurement prob-
lem concrete. At the same time, this kind of minimalist measure is susceptible
to criticisms that it omits important elements of the target concept. These

https://en.wikipedia.org/wiki/Purchasing_power_parity
https://en.wikipedia.org/wiki/Purchasing_power_parity
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might include variable access to public goods as opposed to private resources
(Laderchi et al., 2003).

Other researchers have developed more multidimensional measures that
reflect the capabilities approach (more recently, the World Bank has also moved
in this direction, see World Bank, 2018). The one we will look at in detail is the
2018 version of the Global Multidimensional Poverty Index (MPI)

The original MPI was co-designed and launched in 2010 by the United Nations
Development Programme (UNDP) Human Development Report Office (HDRO)
and the Oxford Poverty and Human Development Initiative (OPHI) at University
of Oxford. It was first published in 2010 as part of the Twentieth Anniversary of
the Human Development Report (HDR). The original MPI were aligned, insofar
as was then possible, with indicators used to track the Millennium Development
Goals (MDGs). The global MPI has been published in every HDR subsequently,
with adjustments that have been documented in the methodological reports.

In the original development of the MPI, Alkire and Santos (2010) write that
“The potential dimensions that a measure of poverty might reflect are quite
broad and include health, education, standard of living, empowerment, work,
environment, safety from violence, social relationships, and culture among
others.” However, they ultimately develop a measure that only uses three
of these dimensions: health, education and standard of living. Why? “. . . the
binding constraint is whether the data exist. Due to data constraints (as well
as, perhaps, interpretability) we have had to severely limit the dimensions. For
example, we do not have sufficient data on work or on empowerment. Yet each
of these dimensions should arguably be considered in a human development-
based multidimensional poverty measure.”

This kind of problem is extremely common in scale development. You have
a conceptualization of the target concept that you find theoretically appealing,
but you cannot identify relevant indicators. In the case of poverty measures,
the social exclusion approach may be theoretically attractive for some pur-
poses, but it turns out to be relatively difficult to operationalise (Laderchi et al.,
2003). You have to make difficult choices about what you can measure, or what
you can measure reliably, and there is seldom a right answer for all purposes.
Often, it is trying to identify indicators that makes it clear that your conceptu-
alization is not going to be usable as the basis of a measure.

So what are the key features of the MPI conceptualisation that we are going
to focus on?

1. Poverty is a property of individuals.
2. Poverty is binary (you are poor or you are not poor) but there are also

degrees of poverty among those who are poor.
3. Poverty is multidimensional, involving health, education and standard of

living.
4. Country-level poverty is constructed by aggregating individual-level

poverty, not by examining country-level statistics.

http://hdr.undp.org/en/2018-MPI
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9.6.2 Indicators

The MPI uses 10 indicators in total, two for health, two for education, and six
for standard of living. These measures are at the individual-level, based on
household surveys.

Figure 9.3: Global Multidimensional Poverty
Index (MPI) dimensions and indicators

Ideally one wants indicators that themselves have high measurement va-
lidity and reliability. It does not do much good if you break a single difficult
measurement problem down into a large number of equally difficult measure-
ment problems. It is important that the constituent dimensions are themselves
easier to measure than the overall concept.

The measures in the table above are all reasonably straightforward factual
propositions, although some are themselves tricky to assess. It is easy enough
to determine what a floor is made out of if you are at someone’s home, but
what qualifies as “undernourished”? How far is the nearest source of safe drink-
ing water in minutes walk, round-trip? These are non-trivial measurement
problems in their own right. You can see that there are further decisions about
thresholds lurking at the indicator level. Exactly which flooring materials in-
dicate deprivation? Is a 30 minute roundtrip walk for clean water really good
enough to not be deprived? Maybe it should be 20 minutes? It is often very
difficult to make strong arguments for particular thresholds, but the core con-
ceptualisation of poverty as binary at the individual level means that at some
point thresholds are going to be required.

What is left off this list of indicators that could be feasibly measured? Ta-
ble 4A.1 in the Annex of the 2018 World Bank Poverty Report lists indicators
that are available, and their inclusion in various poverty indices. Some of the
ones that are excluded from MPI (but appear in other indices) are monetary
measures of standard of living (eg income below $1.90 per day), vaccination
coverage and having a midwife at recent births as measures of health poverty,

http://hdr.undp.org/en/2018-MPI
http://hdr.undp.org/en/2018-MPI
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and indicators like threats of crime and natural disasters which might be part
of different dimensions of poverty like security. Note that adding additional
indicators of an existing dimension like standard of living is a more modest
change to the index than adding entirely new dimensions/sub-indices like
security.

9.6.3 Aggregation

The approach followed by the MPI to aggregating the 10 indicators split 2-
2-6 across three dimensions is a statistic " that Alkire and Foster (2011) call
the “adjusted headcount measure”. It may be useful here to refer back to the
discussion in Chapter 6.5 of this class of poverty measures. The statistic is
the weighted average proportion of deprivations, counting only deprivations
among those individuals in a society who have enough deprivations in order
to be considered “poor”. 37 8 = 1 when individual 7 is deprived with respect
to indicator 8 and 0 otherwise. E8 is the weight that indicator 8 gets overall
(where

∑3
8=1 E8 = 1). Given these definitions, >7 is the (weighted) proportion

of dimensions on which individual 7 is poor, and " is the population-level
statistic for the adjusted headcount measure.

>7 =
©«

3∑
8=1

E837 8
ª®¬ (9.7)

" =
1
<

<∑
7=1

>7 · � (>7 ≥ 9) (9.8)

You might be thinking this is a bit complicated, so let’s think about some
simpler measures one might use instead. We might instead use a simple head-
count measure that simply counts up the proportion of individuals who are
poor:

� =
1
<

<∑
7=1

� (>7 ≥ 9) (9.9)

Alternatively, we might just calculate the average proportion of dimensions
on which individuals are poor:

� =
1
<

<∑
7=1

>7 (9.10)

These are both plausible measures in their own right. � captures the “head-
count” of individuals who have enough deprivations to meet the standard of
being poor. This is determined by 9, where the MPI uses 9 = 1

3 such that an
individual is poor if they are deprived on one third of the indicators, after they
are weighted. � captures the average proportion of weighted deprivations for
the entire population. � asks how many people are poor. � asks how much
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poverty there is. The adjusted headcount measure " combines these two ideas,
asking how much total poverty is there among the people who are poor.

Following our discussion from last time, we might think a bit about special
cases for ". " is at most equal to �, because the requirement that we only
count poverty for those people who qualify as poor means that any non-zero
indication of poverty >7 that falls short of the cutoff 9 is not counted. If no one
qualifies as individually poor, then " is zero, whereas �might not be.

We might also think about the units of these measures. � has units of
persons
persons , it is a unitless population proportion. A has units of deprivation

deprivation , a unitless
deprivation proportion. M similarly has units that cancel out. All of these are
unitless measures. Note that the key to getting to these was applying thresholds
for each indicator separately. By translating the presence or lack of electricity
into deprivation vs no deprivation, and the number of years of schooling into
deprivation vs no deprivation, the scale makes these things mathematically
comparable and additive to form >7, the weighted proportion of individual-
level deprivations for individual 7.

Whether the deprivations are really substantively comparable is a more
difficult question. As you will have noticed above, not all of the indicators
in the MPI get equal weight. The authors of that index made a decision to
equally weight the three dimensions of health, education and standard of liv-
ing. Having made that decision, and then concluding that they had six reliable
indicators of the latter dimension and two indicators each of the first two, they
made the decision to weight the indicators equally within dimensions. As a
result, the nutrition and child mortality indicators get weights of 1

2 within the
health dimension, and since the health dimension gets weight 1

3 overall, the
nutrition and child mortality indicators get weights of ( 12 ) (

1
3 ) =

1
6 with respect

to the overall index. The same is true of the two education indicators, while the
six indicators of standard of living each get overall index weight ( 16 ) (

1
3 ) =

1
18 .

Given the overall threshold 9 = 1
3 , this means that to achieve the overall

status of being poor, an individual must either have deprivation on at least two
of the four indicators in the health and education dimension, on one of those
four plus at least three of the six in the standard of living dimension, or on
all six of the standard of living dimensions. This means that, for example, an
individual who is deprived on both of the education indicators but none of the
others is poor, while an individual who is deprived on five of the six standard
of living indicators, but none of the others, is not poor. If you thought this was
wrong, that might constitute an argument for a somewhat different weighting
or thresholding. For example, you could make both of those individuals count
as poor by reducing 9 from 1

3 to
5
18 , but there are many other ways you could

change the weights as well.
It is often difficult to justify any particular weighting or threshold: these

are very challenging aspects of this kind of scaling exercise. The authors of
the MPI (Alkire and Santos, 2010) make a serious effort to discuss these issues.
Regarding weights, they write:
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In the case of health indicators, it seems that malnutrition and mortality are
both important deprivations and it is not clear which is the more important
indicator. In the case of education, it could be argued that having one person
with five or more years of schooling was the most important outcome; yet child
school attendance is a time-sensitive input with long future returns, hence again
we have weighted them equally. Weighting the six asset indicators equally is
admittedly more difficult to justify and is also particularly important given that
this is the dimension that contributes most to poverty in the poorest countries.
Further research on the best comparable asset measures that can be constructed
from multiple datasets would be useful in the future.

The authors of the MPI do a sensitivity analysis in which they examine how
sensitive country-level poverty rates are to varying the relative weights on the
three dimensions to 50-25-25, 25-50-25 or 25-25-50. They find that the relative
ranking of countries changes only slightly (Alkire and Santos, 2010, Section 4.9).
This is a generally useful strategy: if you are not sure exactly how to construct
a scale, try some plausible different ways and see if it matters for anything you
intend to do with the measures.

The authors also examine how country-level poverty rates vary for different
levels of 9, and show that their relative levels are not very sensitive to the
choice of 9, even as more or less stringent cutoffs increase or decrease poverty
rates for all countries (Alkire and Santos, 2010, Section 4.8). The exact threshold
would only matter for relative poverty rates of countries if certain countries
were more likely to have lots of individuals just above or below particular
thresholds. In the example under consideration that does not seem to be the
case, but this sort of sensitivity analysis is valuable whenever you have to make
a difficult-to-justify decision about indicator weightings or thresholds.

9.7 Application - Quality/Disability Adjusted Life Years

As a final example of the challenges associated with putting interval-level
coefficients on different indicators, as well as the implications of choices about
aggregation, we consider the ideas of “quality-adjusted life years” (QALYs)
and “disability-adjusted life years” (DALYs) as a means for quantifying trade-
offs in health economics (Zeckhauser and Shepard, 1976). The motivation of
these measures is that it makes sense, from the perspective of a society, to
spend more health resources where those resources will help prevent worse
outcomes. The target concept of disability-adjusted life years is therefore the
aggregate quality of remaining life for an individual, “worse outcomes” are
those that reduce the lengths of peoples’ lives as well as the quality of their
lives. Since we do not know how long a given individual will live, or what their
quality of life will actually be, the relevant indicators are the things that we can
measure: an individual’s current age and various features of their health status.

The obvious problem with developing such a measure is assessing the
relative badness of different health outcomes and how they should be traded
off. One way to assess this is using a person trade-off technique (Murray, 1994),
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which follows the previously described logic of asking experts to specify the
relative values of coefficients pairs. Experts were asked to choose between
curing a certain number of individuals in one disability class versus another
number in another class, to try to learn how people trade-off the “badness” of
different disabilities versus death. The purpose of the disability-adjusted life
years measure is to facilitate making difficult trade-offs about health resource
allocation, and so identifying the relative weight to put on different kinds of
bad/good health outcomes is unavoidably central to the problem. Here, we can
think of different disabilities as different indicators, and the question is what
weight they should have such that they become comparable for the purposes of
the concept of quality/disability-adjusted life years.

Figure 9.4: Disability class weights from
Murray (1994), developed by person trade-off
technique.

Figure 9.4 highlights that explicitly facing the tradeoffs between indicators
can be uncomfortable. Murray (1994) reports results from an expert panel con-
ducted at the Centers for Disease Control (CDC) in the US which estimates
that the health outcome resulting in someone needing assistance with activi-
ties of daily living such as eating, personal hygiene, or toilet use was assessed to
have 0.92 the weight of a person dying. This means, for example, that a health
intervention that results in 100 people of a given age being left with this level
of disability has the same DALY value as an intervention which results in 92 of
those people dying and 8 surviving without disability. The health researchers
consulted in the development of DALYs did not think that one of these out-
comes was clearly worse than the other.

This kind of explicit numerical tradeoff involving peoples’ lives often strikes
people as unethical, at least on initial reading. Moreover, the structure of
the QALY/DALY means that the lives of those with significant disabilities
are treated as less valuable than those without disabilities. If the question is
whether to save the life of someone with a disability or someone without a
disability, these measures say the latter. This is a side effect of the fact that
the measure treats the disabilities themselves as bad outcomes to be avoided.
One might, instead, base medical decisions entirely on maximising life years,
without disability adjustment. But this would mean putting no weight in
decision-making on avoiding disability if that decision had any potential con-
sequence for whether anyone lived or not. It is important to note here that
the quantification is not what generates the ethical discomfort. Our ethical
discomfort is guaranteed by the the motivating fact of a societal allocation of
limited resources, which in turn requires choices about prioritisation, which is
just another way of describing the need for a methodology to determine which
outcomes are better versus worse overall.

Whether or not this is an avoidable problem, it is nonetheless an unusu-
ally stark example of the tradeoffs implicit in any linear index: you are stating
that a given quantity of �1 is equivalent to some quantity of �2, and so on for
the other indicators. If you are not comfortable with what this implies when
you explicitly state the equivalence, then you need to either refine the 1 coef-
ficients/weights until you are comfortable, or you need to reconsider whether
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you actually want to be collapsing multiple indicators into a single concept. It
may be that certain kinds of tradeoffs are unavoidable—eg you need to allocate
some limited resources—but it may instead be the case that nothing is actu-
ally constraining you to find a unidimensional conceptualisation that requires
making these trade-offs as part of the measurement strategy.

Figure 9.5: Effects of COVID on deaths,
years of life, and QALYs in the US by age.
https://twitter.com/JulianReif/status/1440248140427239428

9.8 Application - Global Health Security Index

The Global Health Security Index was created in order to measure the extent
to which different countries were prepared for health threats, particularly from
disease:

The GHS Index is a project of the Nuclear Threat Initiative (NTI) and the
Johns Hopkins Center for Health Security ( JHU) and was developed with The
Economist Intelligence Unit (EIU). These organizations believe that, over time,
the GHS Index will spur measurable changes in national health security and
improve international capability to address one of the world’s most omnipresent
risks: infectious disease outbreaks that can lead to international epidemics and
pandemics. (Cameron et al., 2019, p5)

The NTI, JHU, and EIU project team—with generous grants from the Open
Philanthropy Project, the Bill & Melinda Gates Foundation, and the Robertson
Foundation—worked with an international advisory panel of 21 experts from 13
countries to create a detailed and comprehensive framework of 140 questions,
organized across 6 categories, 34 indicators, and 85 subindicators to assess a
country’s capability to prevent and mitigate epidemics and pandemics. (Cameron
et al., 2019, p7)

The creators of this index thought that this was an important area for
improving social measurement, and in light of subsequent events it would be
difficult to argue otherwise. The 2020 coronavirus pandemic made exactly
this kind of preparedness critically important for countries. But it also gives
us a rare validation opportunity for an index of this kind. Did the scores that
countries received on this index in 2019 predict their ability to cope with the
pandemic that arrived soon thereafter?

At the time that I am writing this, in the summer of 2020, it is difficult to
do a proper quantitative assessment of this question. Such an assessment is
not straightforward given the many factors that affected which countries were
seeded with cases early in the pandemic, and thus faced rising cases with the
least time to prepare. With these caveats, it is nonetheless the case that the
index appears to have failed at its stated goal, unless one defines “capability”
in such a way that poor performance at preventing and mitigating an actual
pandemic can be explained away as due to factors other than this capability.

The top ranked countries in the GHS Index (by a substantial margin) are the
United States (83.5) and the United Kingdom (77.9), followed by the Netherlands
(75.6), Australia (75.5), Canada (75.3), Thailand (73.2) and Sweden (72.1). This is
a fascinating collection of countries given the development of the pandemic
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through the summer of 2020. The United States’ coronavirus response has
been widely agreed to have been disastrous, and as of late July had cases and
deaths trending upward. The United Kingdom locked down relatively slowly
by comparison to other European countries, with the possibility that delay
doubled the death total in the early stages of the pandemic. Sweden is notable
as being one of very few countries that took a principled stance against the use
of a “lockdown” to restrict movement and social contact, relying instead on
voluntary social distancing.

As of 28 July, the United Kingdom (674 deaths per million), Sweden (563
deaths per million), and the United States (447 deaths per million) all ranked
among the top ten internationally in terms of confirmed death rate, with the
Netherlands (358 deaths per million) and Canada (235 deaths per million) not
far behind. Of the top ranked countries in the GHS Index, only Australia (6.3
deaths per million) and Thailand (0.8 deaths per million) can be said to have
performed very well at preventing fatalities. Of these, Thailand is the most
notable, given that it is the only middle income country in the list. It appears
to have been a genuine outlier in terms of having a highly successful pandemic
response, and its presence near the top of the GHS Index is consistent with
the possibility that the index was capturing something meaningful about Thai-
land’s capacity in this area.13 13 Thailand took costly action early, including

banning all incoming passenger flights in
April 2020, despite having an economy that is
highly dependent on tourism.

Given that the GHS Index aimed to “assess a country’s capability to prevent
and mitigate epidemics and pandemics”, the fact that so many of the worst hit
countries ranked high on the index is reason for concern about the validity of
the index. The examination of the countries at the top of the index is of course
a very imprecise form of face validation. There is variation in coronavirus
fatality rates that probably has little to do with anything that governments
could do in immediate response to the emergence of the pandemic. Further,
the countries that were most prepared in the ways that the GHS measured
might have also been most at risk, either of pandemics in general or given
the specific features of this pandemic in particular. A proper quantitative
assessment would want to try to control for these other attributes of countries
in order to assess whether the GHS Index provided any useful signal about the
target concept that it aimed to measure. Given the observed patterns it seems
unlikely that it provided a very strong signal, if any at all.

This is an example of one of the key perils of index construction. In con-
trast to cases where there is training data with which to calibrate the relevance
of different indicators to the measurement of the target concept, the authors
of the GHS Index did not have a great deal of training data to see how well
countries would perform in a global pandemic. Previous epidemics in recent
decades have been far more limited in scope, and have affected some coun-
tries and not others, providing little evidence regarding which attributes of
countries actually help respond to disease outbreaks. While there are many
indicators that are suggestive of capacity, and some of them really might mat-
ter for capacity, it seems that in 2020 those indicators did not turn out to be

https://www.ft.com/content/820761d1-8bb2-4386-9637-ce4280d7f6e3
https://www.ft.com/content/820761d1-8bb2-4386-9637-ce4280d7f6e3
https://www.ft.com/content/a2b4c18c-a5e8-4edc-8047-ade4a82a548d
https://www.ft.com/content/a2b4c18c-a5e8-4edc-8047-ade4a82a548d
https://www.ft.com/content/a2b4c18c-a5e8-4edc-8047-ade4a82a548d
https://www.ft.com/content/aa1343ad-4f45-47a8-bf36-19fc0a58b90c
https://www.ft.com/content/aa1343ad-4f45-47a8-bf36-19fc0a58b90c
https://www.theguardian.com/world/2020/jul/23/deserted-beaches-empty-bars-covid-19-devastates-thailands-tourist-islands
https://www.theguardian.com/world/2020/jul/23/deserted-beaches-empty-bars-covid-19-devastates-thailands-tourist-islands
https://www.theguardian.com/world/2020/jul/23/deserted-beaches-empty-bars-covid-19-devastates-thailands-tourist-islands
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very predictive of the ability of countries to actually “prevent and mitigate
epidemics and pandemics”.

9.9 Conclusion

One “feature” of scales constructed in this way is that there is seldom a natural
metric for the target concept. For example, the immigrant integration scale
discussed above is reported on a 0-1 scale, by linearly rescaling the 12-60 or
24-120 points to run from 0-1. But there is no right answer to what range the
scale should cover.

One question you might have is whether these sorts of scale are really
interval-level scales. Is a given increase really equally meaningful at all points
of the scale? How credible the interval-level interpretation is depends on how
the scale was constructed. To the extent that the interval-level assumptions
are not met, this tends to undermines the validity of the scale overall. This is
particularly true for linear indices, where the additivity of indicators requires
that you believe in the interval-level interpretation. Failure of the interval-
level interpretation implies you should not have been adding the indicators.
Additivity is often simply a convenient mathematical structure, but if you
think it is seriously wrong, you have a deeper problem than whether you can
interpret your scale as interval-level rather than merely indicating ordering.

The biggest challenge in measuring the kinds of concepts we have been
considering in this chapter is finding good indicators of those concepts, but
indicators that are not individually already adequate as measure of the con-
cept. Sometimes the challenge is finding the indicators at all. For example, the
multidimensional poverty index that we examined was based on dimensions
of health, education and standard of living. The authors of that index con-
sidered further dimensions of work, empowerment, the environment, safety
from violence, social relationships, and culture, but simply could not come up
with indicators of these theorised dimensions of development that could be
feasibly collected for a wide range of countries (Alkire, 2013). Depending on
how important you think these dimensions are relative to the three that were
included, you could argue that the measure is theoreticallymissing over “half” of
the target concept. Empirically, this might lead to measurement error because
you have failed to capture important elements of what you are interested in.
If those elements are correlated with the other variables in your analysis, this
can lead you to erroneous conclusions. On the other hand, if all of these addi-
tional dimensions are highly correlated with the three that are included, then it
might be that the measurement error is small despite the theoretically relevant
omissions.

These kinds of measurement errors can be mitigated by interpreting re-
sults narrowly. The actual poverty index only measures three dimensions of
poverty. So long as you remember that and state your results clearly, you won’t
be wrong. With all these kinds of measurements, one needs to be extremely



192 benjamin e lauderdale

cautious about making causal claims where the measure is the indepen-
dent/treatment variable. What would need to be the case for you to vindicate
such a claim? You would need some kind of exogenous variation in the under-
lying concept, which manifested itself in the measure. There are circumstances
where this could be plausible, but it is very likely that if you can identify them,
there is an alternative definition of the treatment variable that would yield a
clearer analysis. For example, you might note a natural disaster causing a shock
to poverty in a given place, and then examine some downstream outcome.
This might enable you to study the effects of poverty in a more causally credi-
ble way than is typically possible, but you would have difficulty disentangling
those from direct effects of the hurricane that did not operate via its effect on
poverty.

This is not to say that measurement scales like this have no place in causal
analysis. There are situations where scale measures like these are appropriate
running variables for regression discontinuity designs, but these only arise
where an existing scale is used to make administrative decision. See, for ex-
ample, an analysis by Lerman (2009) that uses the assignment of prisoners
in California to different prison environments based on an additive scale of
inmate background, crime and and sentence characteristics.

It is also reasonable to make causal claims where the kind of scale we have
been discussing is the outcome variable. So long as there is a sound identifi-
cation strategy for making a causal claim, these kind of scale measures can be
a useful way of summarizing effects that manifest across a collection of indi-
cators. In such situations it is reasonable to talk about causal effects of some
treatment on your measure. You should be a bit more careful about making
claims that there is a treatment effect on the underlying concept, because there
is always the possibility that the causal effect is on the measurement error of
your measurement strategy, rather than the component of the measure associ-
ated with the target concept.



10
Supervised Class Measurement

As we have followed a series of methods from principle components to factor
analysis in Chapter 11 to the item response models covered in Chapter 12, we
have left behind the idea of measures as summary linear functions of indicators
that motivated Chapters 8 and 9. With factor analysis, and even more so with
item response models, we have been developing the idea of generative models
where indicators arise from latent variables. These still have linear functions
at their core, but linear functions of the latent variables (the quantities to
be measured) rather than of the indicators. In the case of the item response
models, our indicators are then non-linear (logistic) functions of that linear
relationship.

In this chapter, we will turn from tools for measuring continuous quantities
to measuring categorical quantities. This chapter and the next one will re-
explore some of the methodological dimensions mapped out in the last four
chapters for these different quantities of interest. We will once again consider
supervised and unsupervised methods, summary methods and generative
models, and indicators with different levels of measurement. This chapter will
cover methods based on theoretical arguments and supervised methods that
deploy relevant training data, while the next chapter will cover unsupervised
methods.

There is one important novel issue that arises when one is measuring a con-
cept that is properly understood as categorical rather than continuous. Under
what circumstances should we work with point classifications of the categorical
quantity versus working with probabilistic classifications of that quantity? That
is to say, if the indicators you have and the measurement strategy you have
developed say that a unit has a 75% chance of being type A and a 25% chance
of being type B, when does it make sense to say that the measure is “type A”
and when does it make sense to say that the measure is a “0.75 type A, 0.25 type
B”? When we measure continuous, interval-level quantities we do not have to
worry about this issue in the same way because the expected value of the quan-
tity we are trying to measure is also a valid level of the variable. This is not true
for binary quantities.

However, before we turn to this question of what kinds of measures of cat-



194 benjamin e lauderdale

egorical concepts are most appropriate to use in different applications, first
we need to consider how to make the decision to conceptualise a quantity as
categorical in the first instance. Once we have done that, and have considered
the question of whether a categorical concept necessarily needs a categorical
measure, we can proceed to the mechanics of supervised measurement. Here
we will examine two approaches, appropriate for applications where we have
training data and for where we do not. First, corresponding to Chapter 8 for
continuous concepts, we will discuss the use of logistic regression and alter-
natives1 where training data are available. Then, in a way that is analogous to 1 There are many such alternatives, as a

tremendous amount of work in machine
learning is on classification problems, and a
very large number of tools for classification
exist as a consequence.

the discussion of index construction in Chapter 9, we will discuss the develop-
ment of “coding rules” for creating categorical variables from indicators where
there is no training data. We will then consider the very large number of ways
of evaluating classification error, and their relevance to describing error in
categorical measurements.

10.1 Conceptualisation

Measuring classes (categorical variables) rather than scales (continuous vari-
ables) is often a choice of the analyst. In some contexts, one can easily imagine
either continuous or categorical conceptualisations of the target concept
that you want to measure. For example, consider the problem of measuring
whether countries are democratic. There are continuous scale measurements
of the concept of democracy—to what extent are countries democratic?—but
this concept can also be conceptualised in a binary way. Is the US a democracy?
Is Russia a democracy? Is Iran a democracy? The answers could just be yes
or no. On the other hand, they could be “mostly” or “barely” or “a bit more so
than this other country”. This is ultimately a choice about how we want to talk
about the underlying social science concept. Categorical conceptualisations
require making sharp classification choices at the margins in a way that contin-
uous conceptualisations do not. Sometimes this is what you want, sometimes
it is not. For some purposes it is important to think in terms of classes while
for other purposes it may be more sensible to acknowledge a continuum of
variation via a scale, even if that scale is defined by end points that correspond
to ideal types.

Figure 10.1: Lumpers and Splitters
https://xkcd.com/2518/

Non-binary categorical measurements come in the usual types of levels
of measurement—nominal or ordinal–depending on whether their levels are
ordered in a single dimension. To continue the theme of measuring democracy
at the country level, there is a rich history of scholars defining different con-
ceptualisations of regime type. Plato describes five regime types—Aristocracy,
Timocracy, Oligarchy, Democracy and Tyranny—which have a logical order-
ing in Plato’s thought (Republic, Book VIII). Aristotle defines six regime types,
which distinguish between the extent to which political power is concentrated
versus diffuse and whether the regime is “correct” or “deviant” (Miller, 2017):
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Correct Deviant

One Ruler Kingship Tyranny
Few Rulers Aristocracy Oligarchy
Many Rulers Polity Democracy

Inventing new regime typologies has never gone out of fashion.2 Political 2 The Wikipedia page on forms of govern-
ment lists nearly 100 types of regime that
someone, somewhere, has previously defined.
The page helpfully notes that “This article
lists forms of government and political sys-
tems, according to a series of different ways
of categorizing them. The systems listed
are not mutually exclusive, and often have
overlapping definitions.”

scientists continue to revise and reinvent typologies of regime type. Sometimes
this involves subdividing existing types, for example dividing democratic
regimes into subtypes such as “liberal”, “constitutional”, “electoral” and “limited”
(Wigell, 2008). Sometimes this involves mapping out relationships between
different types that have already been discussed by previous scholars.

87Classifying political regimes 1800–2016: a typology and a new…

also identify a separate subcategory of this regime type, labeled monarchic oligar-
chies. In addition, we use the term party-based regime (which is the one Geddes 
et al. use in their codebook) instead of dominant party and split up this category into 
single-party and multi-party authoritarian regimes.

The distribution of the regimes is presented in Table 1. Among the democratic 
countries, we note that the vast majority of the cases are republics, and within this 
category, the parliamentary form of government is almost as popular as the presi-
dential one. The semi-presidential form of government occurs less frequently, 
although it has become increasingly popular during the last three decades. Among 
monarchies almost all cases are, naturally, parliamentary systems, whereas semi-
monarchies are quite rare. Among autocracies, the category of monarchies contains 
the largest number of cases, followed by military regimes. The number of party-
based regimes and personalist regimes is approximately the same, whereas oligar-
chies occur less frequently.

Democracies

Presidentialism

Most authors agree that at least three criteria should be met in order for a system to 
be presidential, namely that the president (or rather the chief executive) is elected 
by popular vote; the government cannot be dismissed by a parliamentary vote of no 
confidence; and the president appoints and directs the government (e.g., Shugart and 
Carey 1992: 19; Sartori 1997: 83–84).

In the dataset, we apply this minimal definition of presidentialism. However, for 
the sake of parsimony, we ease the criterion of popular election of the president 
to some extent. There are, for instance, countries like the USA and Bolivia, where 

Regime  

Democracy Autocracy

Monarchy (Absolute) 
Military rule 
Party-based  

Monarchy (Const.) Republic single-party
multi-party

Parliamentary Presidential Personalist                
Semi-monarchy Semi-presidential  Oligarchy 

Parliamentary monarchic oligarchy
other oligarchy   

Fig. 1  Structure of the database

Figure 10.2: Figure from Ancker and
Fredriksson (2019) depicting a typology
of regime type using a conceptual tree.

There are two common ways to think about the relationships between
different categories in these sorts of typologies. One of these is in terms of con-
ceptual trees, with branches defined by relevant attribute differences between
types. See, for example, the regime types described by Anckar and Fredriks-
son (2019) depicted in Figure 10.2. The other is in terms of latent spaces, with
dimensions of difference defined by different attributes. See, for example, the
regime types described by Wigell (2008) in Figure 10.3.

The choice between describing a typology in terms of a tree or a latent
space is related to the logical relationships between the types. Trees are more
useful where the attributes distinguishing types “interact” in stronger ways,
such that the relevance of one attribute depends strongly on the levels of the
others. For example, in Figure 10.2, the attributes that would distinguish be-
tween “Monarchy (Constitutional)” and “Republic” in the left branch under
“Democracy” may not be relevant to distinctions among different types of “Au-
tocracy” in the right branch. Spatial metaphors are more relevant where the
attributes that are relevant to categorization are more independent. Thus, in
Figure 10.3, increasing “Electoralism” moves the regime type from “Author-
itarian Regimes” to “Electoral-Autocratic Regimes” if “Constitutionalism” is
low, and from “Constitutional-Oligarchic Regimes” to “Democratic Regimes” if
“Constitutionalism” is high, and thus it is relevant in either case.

On the basis of the four-fold categorization Figure 3 shows a two-dimensionalmodel
for mapping political regimes where no corner marks a residual category, but each stand
in logical relation to the others separated by a clear set of indicators. This two-dimen-
sional regime typology allows us to locate regime categories, such as populist authori-
tarianism and oligarchical liberalism as well as their recent offspring, such as delegative
and tutelary democracy, that do not easily fit into a uni-dimensional typology. The
dimensions and attributes of electoralism and constitutionalism provide us with clear
conceptual and operationalization criteria for locating these categories and subcate-
gories, which in comparative regime analysis have often appeared to be ‘problematic’.40

The dotted lines in Figure 3 illustrate the thresholds fixed by the minimal electoral
(horizontal axis) and constitutional (vertical axis) criteria. The category of authoritar-
ian regimes includes cases that fulfil neither the minimal electoral conditions nor the

FIGURE 3

A TWO-DIMENSIONAL REGIME TYPOLOGY

Notes: ‘closed hegemony’ (CO), ‘populist autocracy’ (PA), ‘liberal oligarchy’ (LO), ‘liberal democracy’ (LD).

TABLE 2

REGIME TYPES

Regime Types
Minimal
Electoral

Minimal
Constitutional

Additional
Electoral

Additional
Constitutional

Authoritarian 2 2 2 2
Electoral-Autocratic þ 2 þ/2 2
Constitutional-Oligarchic 2 þ 2 þ/2
Democratic þ þ þ/2 þ/2

Note: The plus indicates the presence of the bundle of attributes listed at the top of each respective column.
The minus indicates the absence of the bundle of attributes.þ/2 indicates that the bundle of attributes may
be either present or absent.
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most African democracies fall into this category. In these countries many of the
defects that O’Donnell, Valenzuela and others have described are present. Improving
the quality of democracy in these countries will entail further popularization (improv-
ing electoral empowerment, integrity, sovereignty, and irreversibility) as well as lib-
eralization (improving executive, legal, and local government accountability, as well
as bureaucratic integrity).

In the category electoral democracy can be found cases that fulfil the additional
electoral conditions, but not the additional constitutional conditions. These are cases
that may show ‘delegative’ or ‘neo-populist’43 forms of rule. Their electoral insti-
tutions are effective for producing vertical accountability, but their limited consti-
tutional institutions fail to produce horizontal accountability.44 Thailand under the
Thai Rak Thai government belongs to this category, as well as South Korea under
the era of the ‘three Kims’.45 Argentina under the government of Carlos Menem,
1989–1999, is a paradigmatic example of an electoral democracy. His government
blatantly exploited Argentina’s limited constitutional institutions and traditions in
order to impose its structural reform programme. By taking advantage of the legiti-
macy provided by Argentina’s strong electoral institutions and its populist traditions
Menem was able to circumvent the weak constitutional controls provided by a poli-
ticized judiciary. At the same time, however, the sustainability of the structural
reforms was compromised exactly because of these limited constitutional conditions –
a bureaucracy with weak integrity and ‘brown’ legislators46 fighting to sustain their
local power bases through prebendalism.

In the category constitutional democracy can be found cases that fulfil the
additional constitutional conditions, but not the additional electoral conditions.
Hence, these are cases that may show ‘tutelary’ or ‘protected’ forms of rule. They
are a type of democracy with effective horizontal, intra-state checks and balances,

FIGURE 4

A TWO-DIMENSIONAL TYPOLOGY OF DEMOCRACY

246 DEMOCRATIZATION

Figure 10.3: Figures from Wigell (2008)
depicting how a typology of regime type
relates to an underlying 2D conceptual space
of electoralism and constitutionalism, both
across democratic and non-democratic
regime types (top) and also ithin democratic
regime types (bottom).

The spatial metaphor conveys ordering information in a way that the
branching metaphor does not, and thus is conducive to conceptualisations
involving ordered categories. For example, as one moves up the right edges
of the two panels in Figure 10.3, at high “Constitutionalism”, one goes from
“Constitutional-Oligarchic Regimes” to “Constitutional Democracy” to “Liberal
Democracy” (note that the second panel, Figure 4 from the original paper, is
entirely embedded within the top right panel of the first). This kind of ordinal
classification raises issues of where to set the thresholds: how much electoral-
ism do you need to move “up” a classification? However thresholding issues are
challenges with all categorical conceptualisations, in most contexts there will
be difficult border cases, regardless of whether your conceptualisation uses a
tree or a spatial metaphor.

https://en.wikipedia.org/wiki/List_of_forms_of_government
https://en.wikipedia.org/wiki/List_of_forms_of_government
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The mechanics of how one relates the boundaries between categories to
indicator data is something we will discuss in the next two sections. The first
of these describes the use of training data to estimate the relationship between
indicators and the classes/categories that one wants to measure. The second
of these describes the use of expertise to define a set of “coding rules” to map
values of indicators onto values of the classes/categories that one wants to
measure. The former is the classification analogue to the kind of analysis
that we saw in Chapter 8 for measuring scales, the latter is the classification
analogue to the index construction techniques that we saw in Chapter 9.

10.2 Supervised measurement with training data

When we were considering the measurement of interval-level quantities, we
considered examples of running regression models to predict a set of known
measures using a set of indicators in a training data set. We could then use
those same indicators, measured for a larger set of units, to construct measures
that reflected the relationships we had observed between the indicators and the
“gold standard” measures in the training data. This depended critically on the
availability of pre-existing measures so that we could do the training at all, but
where possible, it enabled us to find the combinations of indicators that best
predicted the quantity that we wanted to measure (or at least the training data’s
approximation thereof).

We can use this same logic for categorical nominal-level or ordinal-level
quantities by using an appropriate discrete choice / limited dependent variable
regression model. For classification into two categories, we can use binary
logistic regression; for classification into more than two ordered categories,
an ordinal logistic regression; for classification into more than two unordered
categories, a multinomial logistic regression.3 Where we have branching logic 3 Regularized logistic regression is useful in

data sets with large numbers of indicators
relative to training observations.

in our conceptualisation as in Figure 10.2, we can use nested logit models to
reflect this as well. The mapping between discrete choice models and the
conceptualisation of the quantity to be measured is usually reasonably clear,
the challenges in applying these methods are primarily identifying strong
indicators and having the training data necessary to follow this approach at all.

One need not use logistic regression for these problems. There are a be-
wildering number of potentially applicable alternative statistical models and
machine learning tools that one might use instead. These include probit re-
gression, support vector machines, linear discriminant analysis, naive Bayes
classifiers, regression trees, random forests, and neural networks. However,
what they all share, is that they are tools for determining a mapping from indi-
cator values to the classes/categories that one wants to measure, using a set of
training data for which the latter has already been measured some other way.
Once this mapping has been estimated, it can be applied out-of-sample as a
measurement strategy for new units.

This non-exhaustive list includes some methods that provide only point

https://en.wikipedia.org/wiki/Discrete_choice
https://en.wikipedia.org/wiki/Discrete_choice
https://en.wikipedia.org/wiki/Probit_regression
https://en.wikipedia.org/wiki/Probit_regression
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Artificial_neural_networks
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classifications and some that also provide probabilistic classifications. We
can see this distinction most easily in the context of binary logistic regres-
sion. Consider the case where we have a set of “gold standard” measurements
; ∈ 0, 1 from some pre-existing measurement procedure for the concept of
interest ` ∈ 0, 1. We will use this training data to calibrate a new measurement
procedure. Our new measurement procedure will be based on a set of one or
more indicators �—�1, �2, etc—that we want to use to to measure the concept
of interest. Our goal is to determine how to most effectively use them to ap-
proximate `, given the indicator variables � that we have, plus the information
contained in ; about how they relate to `.

If we use logistic regression to estimate the relationship between � and ;, we
assume a model of the form:

>(;7 = 1)
>(;7 = 0) = U + V1�17 + V2�27 + · · · (10.1)

The predicted probabilities of a logistic regression is given by the formula:

�>(;7 = 1) = 4U+V1 �17+V2 �27+···

1 + 4U+V1 �17+V2 �27+···
(10.2)

We now have a choice. We could say that this predicted probability �>(;7 = 1)
is our measure, or we could use it to make a point prediction for ;7, where
;̂7 = 0 if �>(;7 = 1) < 0.5 and ;̂7 = 1 if �>(;7 = 1) ≥ 0.5. The point classi-
fication ;̂7 ∈ 0, 1 has the virtue of being binary, like the target concept. The
probabilistic classification �>(;7 = 1) ∈ [0, 1] has the virtue of incorporating
uncertainty about the true classification of the unit, and turns out to have more
attractive properties for many applications, as we will discuss in a later section
of this chapter.

10.3 Coding rules

In many contexts, we want to develop classifications without pre-existing
training data by deploying relevant theoretical arguments. As was the case
when we discussed theoretically motivated measures in Chapter 6 and also
index construction in Chapter 9, this requires deploying relevant expertise to
determine how the indicators aggregate up to a classification.

One way you might do this would be to follow the index construction
strategies described in Chapter 9, and then set thresholds in the index to trans-
late to a(n ordered) categorical measurement. Many of the indices that we
examined previously do this as well as providing index values. For example,
the Global Health Security Index categorises countries into “Least Prepared”,
“More Prepared” and “Most Prepared” based on thresholds in an underly-
ing index. These ordinal categorisations of index tend to use fairly arbitrary
thresholds.

The more interesting uses of expertise to determine how indicators aggre-
gate up to a classification are those that involve specifying a “coding scheme”

https://www.ghsindex.org
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that directly maps the indicator levels into the classes. As an illustrative exam-
ple, we will consider a binary classification of regimes into democracies and
non-democracies by Alvarez et al. (1996). The authors set out four rules for
classifying which countries were non-democracies in which years. Any one of
these rules applying to a country-year is sufficient to classify that country-year
non-democratic. - Rule 1. “Executive Selection.” The Chief Executive is not
elected. - Rule 2. “Legislative Selection.” The Legislature is not elected - Rule 3:
“Party.” There is no more than one party. - Rule 4: A regime passes the previous
three rules, the incumbents will have or already have had continuously held
office by virtue of elections for more than two terms or without being elected
for any duration, and until today, or the time when they were overthrown, they
have not lost an election. The last rule is convoluted, but is carefully worded
to address cases where countries have had a long period of elections without
any transfer of power, and it is unclear that the incumbents would relinquish
power were they to lose an election.

Regardless of the merits of this coding scheme for regime type as such, it
illustrates how relevant expertise can be deployed to specify a classification
scheme. In their paper, Alvarez et al. (1996) carefully explain the logic and ap-
plication of each of their rules in order to create a set of indicators, as well as
why they are aggregated in the way that they are. They require that a democ-
racy have a directly or indirectly elected executive, directly elected legislature,
electoral competition, and evidence of turnover in office. This aggregation rule
is multiplicative (all of the above are required) rather than additive, and the
authors explain why they think being a democracy requires all of these things
and that we should not talk about partial democracies. The authors also do
not focus on franchise requirements, explaining that they are focusing on the
existence of contestation rather than any broader notion of the system being
representative. These are all choices, and other ones are possible.

For our purposes here, the point is that this is the classification equivalent
of index construction. By its nature, constructing an interval-level measure
requires mapping different indicator levels, and combinations thereof, onto a
common metric scale. In contrast, constructing an ordinal-level or nominal-
level measure requires mapping different indicator levels, and combinations
thereof, onto categories. In both instances, the validity of the measure relies
on the quality of the expertise, in these kinds of measurement strategies there
is no training data to fall back on to determine the relationships between
indicators and measure.

10.4 Point classifications versus probabilistic classifications as measures

When we considered continuous, interval-level measures, we implicitly took
advantage of a feature of such scales which is not present for binary/categorical
measures. For interval-level quantities, � [`|�] is itself a valid level of `. That
is to say, if the expected value of the quantity of interest that we wanted to
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measure given all the indicators we have is 3.7, then our measure ; can be 3.7.
This is not true for categorical variables. For example, for a binary variable,
� [`|�] will almost never be 0 or 1, it will be some probability >(` = 1|�) ∈
[0, 1] that is typically between 0 and 1.

As noted earlier, this leaves us with a choice. We could say that this pre-
dicted probability is our measure, or we could use it to make a point classi-
fication for ;7 based on whether it is greater or less than 0.5. The point clas-
sification has the virtue of being binary, like the target concept. The proba-
bilistic classification has the virtue of incorporating uncertainty about the true
classification of the unit. Our task in this section is to consider some of the
implications of this choice.

The idea that we should work with a binary ;7 is very intuitive, surely our
measure of a binary quantity should itself be binary? But in many kinds of
analysis this is a poor choice, as we will now illustrate with a toy example.

Imagine that we have a single indicator � ∈ 0, 1 for a binary quantity
` ∈ 0, 1 that we want to measure. Based on that indicator, and some measure-
ment procedure that we have developed, we can say that the expected value
� [`7 |�7 = 0] = `70 when � = 0 and � [`7 |�7 = 1] = `71 when � = 1. That is, the
indicator tells us something about the quantity we want to measure, such that
if �7 = 0 that gives us one expectation about the quantity (`70) and if �7 = 1 that
gives us a different expectation about that quantity (`71).

Our ultimate application is that we are interested in comparing the mean
values of some other variable . for ` = 0 and ` = 1: � [.7 |`7 = 0] and
� [.7 |`7 = 1]. We assume that . depends only on `7, not �7, such that .7 =

U + V`7 + n7, where n7 has an independent normal distribution with mean zero
and standard deviation f . Overall, we want to run a simple linear regression
or do a comparison of means between two groups, but we have an imperfect
measure of which units are in which group.

To give an immediate intuition for why we might not want to use the point
classification, consider the case where `70 = 0.1 and `71 = 0.4. That is to say,
if we observe an indicator value of 0 for unit 7, our measurement strategy says
that there is a 10% chance that unit 7 has ` = 1. If we observe an indicator
value of 1 for unit 7, our measurement strategy says that there is a 40% chance
that unit 7 has ` = 1. These are both less than 50%, so the point classification
of every unit is ; = 0. This meanswe cannot run the regression because
there is no variation in the x variable. In contrast, if we use the probabilistic
classifications ; = 0.1 for the units where �7 = 0 and using ; = 0.4 for the
units where �7 = 1, not only are we able to run the regression but the expected
value of the difference in means is unbiased: �

[
V̂ |;

]
= V.

Even in cases where the indicator induces variation in ;, using the point
classifications still leads to bias in the subsequent analysis. If `70 < 0.5 and
`71 > 0.5, then the measure is always equal to the indicator ;7 = �7 for all units
7. Using these point classifications, �

[
V̂ |;

]
= (`71 − `70) V, which will be less

than V unless `70 = 0 and `71 = 1, which is to say if there is any measurement
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error at all.4 4 These results get messier if the measure-
ment error in ; versus ` is potentially related
to the outcome . , but we know that already
from Chapter 5. It is still the case that using
the probabilistic classifications is preferable
in almost all circumstances to using the point
classifications.

The key point here is that if you can quantify the measurement uncertainty
in a categorical variable, you should use the probability classification rather
than the point predication as your measure in subsequent analyses that look for
relationships with other variables. Of course in some applications there is no
measure of uncertainty about the classification, so you cannot do this. But in
such instances you should still be worried that subsequent analyses will under-
state the true differences between mis-measured classes, particularly when one
class is much more frequent than the other, and so the misclassifications are
likely to be asymmetric.

10.5 Application - Predicting Clinical Diagnosis of Depression, Part 2

−2 −1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

IRT Model Factor Score

D
ep

re
ss

io
n 

D
ia

gn
os

is

Figure 10.4: Predicting depression diagnosis
with 88 item depression item response model
scores.

In Chapter 12 we looked at data from the PHQ-9 depression screening in-
strument, which consisted of 9 items. The standard scoring scored the four
response levels on each item on a 0-3 scale, and the entire instrument as the
sum of these on a 0-27 scale. As noted in the discussion there, the best evidence
available suggests that using a score of 10 and above best predicts clinical diag-
nosis of depression, achieving a sensitivity of 0.88 (95% interval: 0.83-0.92) and a
specificity of 0.85 (95% interval: 0.82-0.88) (Levis et al., 2019).
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Figure 10.5: Sensitivity versus specificity for
different thresholds of item response model
score predicting depression diagnosis.

But if our goal is to predict clinical diagnosis of depression, why form
a scale at all? Why not attempt to classify respondents into those who will
receive clinical diagnoses of depression versus those who will not? In this sec-
tion, we will use a data set recording how 656 individuals responded to a pool
of 88 depression indicators in order to try to identify a simple measurement
strategy for classifying those who will receive a clinical diagnosis of depression
versus those who will not.5 Since there are 88 different items, I will not list

5 I thank Robert Gibbons for helpful discus-
sion and sharing these data. The data I use
here are from Gibbons et al. (2013) which
follows a more sophisticated version of the
strategy I describe here, but see also Gibbons
et al. (2012) for analogous work related to
the unsupervised scaling from the previous
chapter of this book.

them here. They are largely variations on the kinds of questions in the PHQ-
9, which we examined previously in Chapter 12, with varying wordings and
numbers of categories. Of the individuals in the training set, 25% were clinically
diagnosed with minor or major depression.

I begin by using the graded response model to jointly scale all 88 depression
indicators, as we covered in the previous chapter. Figure 10.4 illustrates that
the item response model scores from this model appear to predict clinical
diagnosis of depression pretty well.

Figure 10.5 shows how we can assess the ability of the item response model
scores to predict the clinical diagnosis. The plot shows how the sensitivity and
the specificity vary across different thresholds that one might use in the factor
score. If one uses a very high threshold, the sensitivity is very low because one
fails to find the true cases of depression, but specificity is very high because
there are no false positives. This corresponds to the lower right of the plot. As
one lowers the threshold, sensitivity improves rapidly and specificity declines
slowly because most of the clinically diagnosed cases have high scores. How-
ever, eventually the threshold falls below most of the clinically diagnosed cases,
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and further reductions hurt specificity with only modest gains in sensitivity,
as one approaches the top right of the curve. There are different ways to de-
fine optimal thresholds to trade off sensitivity and specificity, but those will all
correspond to locations near the top right of the curve.

Recall that the preceding was an unsupervised analysis. We estimated the
scale that best predicted the responses to the depression indicators, but in no
way used the information about which individuals were clinically diagnosed.
If we now turn to a supervised approach, following the strategies described
in this chapter, we might be able to do better at developing a measurement
strategy for identifying those who will be clinically diagnosed with depression,
given the set of indicators that are available in these data.
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Figure 10.6: Predicting depression diagnosis
with logistic lasso regression.
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Figure 10.7: Sensitivity vs specificity curve for
logistic lasso regression (black) and for the
previously described IRT model scores (grey)
predicting depression diagnoses.

These data have a large number of categorical indicators (88) relative to the
number of units (656). If we ran a standard logistic regression, with dummy
variables for each non-baseline level of each indicator, we would likely end up
with a model that was substantially overfit because the number of parameters
(262) would be very nearly the number of units for which we had observations.
So instead, I run a logistic regression with lasso regularization. The details
of how this works are beyond the scope of this text, but the key idea is that
lasso regularization prevents overfitting by penalising complex models (large
coefficients). Lasso regularization leads to models with only a few non-zero
coefficients, even when there are a large number of predictor variables. I use
this to find a relatively simple model of 88 indicator thresholds that predict
clinical diagnosis well, using cross-validation to ensure that the model fits well
out-of-sample.6

6 Implementation is via the cv.glmnet()
function in the glmnet library for R (Simon
et al., 2011).

When we fit this logistic regression with lasso regularization, it estimates
non-zero coefficients for 20 of the response thresholds in the data, which
involve 16 of the items. Exactly which items are the most predictive ones is not
really our focus here, so I have not included a table of the specific items and
response thresholds here. In application, one would want to carefully consider
these as a form of validity checking.7 This means that, if this measurement

7 The single response threshold which has
the largest coefficient in the selected model is
threshold 2 for the item “In the past 2 weeks, I
felt sad.”

model were chosen for purposes of future measurement, one would only need
to survey these items, not all 88.

Figure 10.6 shows that the predicted probabilities from this model are highly
predictive of depression diagnosis.8 Figure 10.7 shows the sensitivity versus

8 Careful readers may wonder why the the
proportion of depression diagnoses does
not map onto the predicted probabilities
one-to-one, but rather increases with a
slope somewhat greater than one. This is
due to the lasso penalty combined with
cross-validation, which is optimising for
out-of-sample prediction, rather than the
in-sample prediction depicted in the figure.

specificity tradeoff for these predicted probabilities. The improvement on the
IRT model scores that we previously examined is small, but there is some. In
some applications, the improvement in going from an unsupervised model to
a supervised model could be quite large, but this is an instance where even the
unsupervised model does quite well because the items included in the data set
have been carefully curated to be closely related to the concept of interest.

These data do not include respondent level covariates for those completing
the depression item battery, but it is worth noting that such variables could
improve classification. For example, there could be gender differences in how
respondents give answers to these questions, such that the same set of re-

https://en.wikipedia.org/wiki/Lasso_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
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sponses is more or less indicative of depression for men versus women. Or it
could be the case that new parents might start responding differently to any/all
of these items after the birth of their child:

• In the past 2 weeks, I had difficulty concentrating.
• In the past 2 weeks, I had difficulty sleeping.
• In the past 2 weeks, I felt sleepy all the time.
• In the past 2 weeks, have you had difficulty staying asleep?

Is this an indication that the items and the survey instrument are inap-
plicable to people caring for newborns? There are alternative diagnostic in-
struments specifically designed for postnatal depression that ask somewhat
different questions. Or is it an indication that the scores should be adjusted
in some way (by including whether someone is caring for a newborn in the
model)? Or perhaps a lot of parents of newborns are depressed? Perhaps psy-
chological interviews misdiagnose these because they dismiss the symptoms
that are in the instrument? These are the sort of subtle issues that are worth
considering, particularly when you are refining a measurement strategy that
seems to do reasonably well overall. Making these assessments relies on having
a very clear definition for the concept, which can be difficult for a concept like
depression.

This discussion also highlights the possibility that a measurement strategy
that works well on average for a population overall may not work well in all
sub-populations. In this instance, the depression measurement model that
fits well on average may not fit new parents very well, which could motivate
including data on being a new parent in the training model or the use of an
alternative measurement instrument for that sub-population. This is a very
general problem, which has been gaining increasing attention in machine
learning research in recent years due to phenomena like facial recognition
systems being systematically worse at recognising the faces of people with
darker skin. Supervised measurement strategies are trained to be accurate
for the data with which they are trained. If those data are unrepresentative
of populations, the measurements will tend to perform better on the sub-
populations that are overrepresented. Even if the data are representative of
populations, the measurements will tend to perform better on larger sub-
population groups.

http://psychology-tools.com/test/epds
http://psychology-tools.com/test/epds
https://www.nhs.uk/conditions/post-natal-depression/
https://www.wired.com/story/best-algorithms-struggle-recognize-black-faces-equally/
https://www.wired.com/story/best-algorithms-struggle-recognize-black-faces-equally/
https://www.wired.com/story/best-algorithms-struggle-recognize-black-faces-equally/


11
Unsupervised Scale Measurement with Interval-Level In-
dicators

In the last few chapters, we considered different ways to assemble sets of
indicators into an index that measured a concept of interest. In Chapter 8
we considered cases where we had training data—pre-existing measures of the
target concept—for some units that we could use to estimate the relationship
between indicators and the target concept. In Chapter 9 we considered the
various ways that expertise—either that of the analyst or a broader set of
experts—can be used to determine that relationship.

In this chapter, we are going to consider what we might do with the set
of indicators, taken by themselves. The novelty in this chapter is that we are
trying to find a concept in the data rather than trying to find the data that
measures our concept of interest. Methods that work in this direction are
unsupervisedmeasurement methods, as opposed to the supervisedmethods we
have considered previously. Supervised methods require supervision in the
sense that you, the analyst, are determining how the concept is measured from
the available data. Unsupervised methods are unsupervised in the sense that
the data is determining what concept is measured.

Unsupervised methods are powerful and widely used. They are also widely
abused and misinterpreted. Indeed they have a rich history of abuse going back
to their invention (on which more below, but also in Chapter 1). Unsupervised
methods discover the dimension(s) that best explains variation in the indicators
you use, in the data set you have. This is not necessarily the concept that you
actually want to measure. Even from stating it in English, we can see that the
criterion of “best explaining variation in the indicators” makes no reference
to any specific target concept. I will show some examples where this criterion
works well, and some examples where it works less well.

In this chapter we will focus on two mathematical methods for doing this
translation, principal components analysis and exploratory factor analysis.
These methods are conceptually very different: principal components analysis
is a summary method while exploratory factor analysis is a generative model.
Nonetheless, much as we saw in Chapter 7 with tallying up points for wins,



204 benjamin e lauderdale

losses and draws (summary) versus a Bradley-Terry model (generative), the
measures we construct with both methods tend to be very similar in practice.

11.1 Principal Components Analysis (PCA)

Principal components analysis aims to summarize the variation in a matrix
of indicators �7 8. We have > observed variables �7 8 ( 8 = 1, 2, . . . , >) measured
for each unit 7 in a sample of data. Where D0@

(
� 8
)
is the variance of observed

indicator 8 across all units 7 in the data, the total variance of the > variables is

>∑
8=1

D0@
(
� 8
)

(11.1)

This is the overall variation between the units in the data across all the indi-
cator variables. The idea of principal components analysis is to re-describe the
data in terms of a smaller number of uncorrelated new variables that capture as
much as possible of the total variance. These uncorrelated new variables are
the principal components.

Because we like things that are linear, we define the the principal compo-
nents ;79 (9 = 1, 2, . . . , >) as linear combinations of the original variables:

;71 = 011�71 + 021�72 + . . . + 0>1�7>
;72 = 012�71 + 022�72 + . . . + 0>2�7>

...

;7> = 01>�71 + 02>�72 + . . . + 0>>�7>

In other words, each component is a weighted sum of the original Fs, where
the 089 areweights or coefficients.1 We are omitting indices for specific 1 Note that we are using Roman letters here

because these coefficients are not part of a
generative process.

units to keep this from getting overly confusing, you should imagine these
equations applying to each specific unit. Hopefully this is clear so far, but the
key question is how we select the 089 so as to achieve the goals that we specified
above: (1) that the new variables ;9 are uncorrelated with one another and
(2) that they redescribe the total variation in the original F variables and (3)
that we describe as much of the variation as possible with the first 1, 2, 3, etc
principal components.

To satisfy the first two conditions—that (1) our principal components are
uncorrelated with one another and (2) redescribe the total variation in the
original variables—we need the weights 089 to satisfy the following:

>∑
7=1

0289 = 1 for each 9 = 1, 2, . . . , >

>∑
7=1

089089′ = 0 for every pair 9 ≠ 9′
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Together, these conditions ensure that the total variance of the PCs is the same
as the total variance of the original variables

∑>

8=1 D0@
(
; 8

)
=

∑>

8=1 D0@
(
� 8
)

as well as that all principal components are uncorrelated with each other
corr(;9,;9′) = 0 for all 9 ≠ 9′.

This gets us most of the way to a solution, but not all the way there. There
are still infinitely many sets of coefficients 089 which would satisfy these con-
straints. We want to use the ones that explain the most variation possible with
the initial principal components, so that we can explain as much variation
as possible with the fewest components. In order to achieve this, the specific
values of the coefficients 089 are obtained from the eigenvalue decomposition
of the correlation (or covariance) matrix of �1, . . . , �>.

(
019, 029, . . . , 0>9

)
is the

eigenvector corresponding to the 9th eigenvalue _9. The whole operation is
equivalent to an orthogonal rotation of the >-dimensional space of the values
of the > variables. For more details on the mathematics by which the coeffi-
cients/weights are calculated, see Chapter 5 of Bartholomew et al. (2008) or any
other detailed treatment of PCA.

Having defined the principal components in this way, D0@ (;9) = _9, the
variance of the 9th PC is equal to the 9th eigenvalue and the proportion of the
total variance explained by the first ? principal components is:

_1 + _2 + . . . + _?
_1 + _2 + . . . + _>

The principal components are in order of decreasing variance, _1 ≥ _2 ≥ _3 ≥
. . . ≥ _>. Subject to the constraints, particularly that the total variance of the
original data is preserved, each of the variances is as large as possible:

• ;1 is that linear combination of the original variables which has the largest
variance across units 7.

• ;2 is the linear combination uncorrelated with ;1 which explains the
largest proportion of the total variance not explained by ;1 across units 7.

• and so on for ;3, . . . ,;>

11.1.1 Properties

Principal components analysis is sensitive to the scale of the original variables
because it operates on the variances of those variables. This has several im-
portance consequences to keep in mind. If you change the scale of all variables
proportionately the principal components will not change. But if you change
the scale of a single variable proportionately, the principal components will
change. Because the procedure aims to redescribe the variance of the original
data, with as much variance as possible explained by the initial components, if
you increase the variance of one of the variables but not the others, the initial
principal components will increasingly focus on explaining variance in that
variable rather than the others because there is more variance in that variable
as a share of the total. If D0@

(
� 8
)
> D0@

(
� 8′

)
, � 8 will receive more “weight” than

� 8′ in PCA.
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This is particularly an issue if different variables have different units of
measurement, in which case their relative variance is substantively meaningless
and arbitrarily determined by the units of the difference indicators. Generally
we do not want the results to be influenced by such differences and so the
variables in a principal components analysis are usually standardised first so
that the principal components weight the variation in each indicator equally.
Recall from chapter 6 that a standardised variable has sample mean 0 and
standard deviation 1 and is derived by first subtracting the sample mean from
each observation of that variable and then dividing by the sample standard
deviation. Therefore, the total variance (as defined above) of > standardized
variables is >, the number of variables.2 Since each variable contributes a 2 Standardisation is automatically achieved

by carrying out PCA on the correlation
matrix of the original variables � 8 . PCA on
the covariance matrix amounts to using
unstandardised variables.

variance of 1, PCA treats them all as having equal weight, and puts equal weight
on explaining variation in each variable.

The only exceptions, in which it is not advisable to standardise, are those
where the scales of all the indicators are already substantively comparable.
This means that they must have the same units in some substantively relevant
sense. In these instances, differences in the variances of the indicators are
substantively meaningful and it makes sense to “put more weight” on the more
variable indicators.

11.1.2 How many components?

When you calculate the principal components for a data set with > variables,
you will recover > principal components, in descending order of variance. Put
together, they describe all the variation in the data set. But because they are
in descending order of variance, the first component provides the best “single
number” summary that is possible, the first two components the best “two
number” summary, and so on. One common question in applications is how
many components are enough to describe the importance variation in a data
set?

• Absolute criteria: components that explain some threshold of the total
variation

• Relative criteria: components that have eigenvalues _9 of at least some
threshold

• Relative criteria: components that are upwards outliers in terms of variance
explained

In practice, the last of these is the most frequently used, because it focuses
on the components that most efficiently explain variation in the data set. Often
this is assessed visually, rather than by some strict criterion, using what is
called a “screeplot”. We will see examples of this in the applications discussed
later in this chapter.

https://en.wikipedia.org/wiki/Scree
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11.1.3 Unsupervised Measurement

PCA is based on mathematics that are very close to those we considered in
the previous two chapters. Principal components are linear combinations of
indicators just as the scales we developed using regression on training data and
expertise were linear combinations of indicators. The difference is in how we
selected the coefficients on the indicators. In Chapter 8, we used regression to
learn the coefficients that best predicted a set of units where we had some pre-
existing measures of the concept we wanted to measure. In Chapter 9 we con-
sidered approaches to setting the coefficients based on expertise: setting equal
coefficients, setting coefficients based on theoretical/substantive arguments, or
estimating them from using expert comparisons of different indicator profiles.
In all of these cases, we provided supervision to the measurement problem to
ensure that it measured what we wanted it to measure.

In this chapter, we have done something fundamentally different. We have
asked the data which coefficients would best predict variation across all indi-
cators in the data set. We might then look at the results to see if it looked like
we measured what we wanted to measure, or if we had measured something
unexpected. PCA is our first example of an unsupervisedmeasurement method.
It is unsupervised in the sense that we have not indicated to the data what it is
that we want to measure, except indirectly through the choice of indicators. We
still implicitly control what is likely to emerge from PCA through the choice of
indicators that we include, but this is a very weak sort of supervision.

One consequence of this is that PCA has no idea which way is up and which
way is down, with respect to any concept you might have been hoping to
recover. If you look back at the way PCA is defined, the signs of the principal
components are completely arbitrary:

;71 = 011�71 + 021�72 + . . . + 0>1�7>
;72 = 012�71 + 022�72 + . . . + 0>2�7>

...

;7> = 01>�71 + 02>�72 + . . . + 0>>�7>

If you multiply 011, 021, . . ., and 0>1 by −1, the sign of the first principal
component ;71 will flip for all observations 7, but nothing else will happen.
All the other principal components stay the same, the variances still add up to
the right total, and the principal components are still uncorrelated with one
another. This means that you can always choose whichever sign is easier to
talk about. It also means that which sign comes out of the computer when you
calculate the principal components tells you nothing.
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11.2 Exploratory Factor Analysis (EFA)

Exploratory factor analysis reverses the underlying logic of how PCA imagines
the relationship between scale and indicators. Recall in Chapter 7 when we
talked about two different ways to measure the strength of teams in the Pre-
mier League. We showed that official way that the league table is calculated,
adding up points based on the results, yields a scale for team performance that
was very similar to what we got from a Bradley-Terry model. The points based
calculation derives a scale by tallying up points for wins, draws and losses to
get a score. The Bradley-Terry model involved hypothesizing that there was
a latent dimension of team strength, and that the probability of wins, draws
and losses depended on the difference in strength between the two sides. The
points strategy defined the scale as arising from the indicators; the latent vari-
able (Bradley-Terry) model hypothesized that the indicators had arisen from
the scale. Similarly, Principal Component Analysis derives scales as linear com-
binations of observed indicators while Exploratory Factor Analysis hypoth-
esizes latent dimensions, with the expected values of the observed indicators
depending linearly on where units are on those dimensions.

11.2.1 Mathematical Details

We will describe a factor analysis model where each observation 7 has ? latent
factors )7 = (\71, \72, . . . , \7?)

We will assume that these latent factors 9 have a multivariate normal distri-
bution:

)7 ∼ # (+,Φ)

with mean vector + (�7 (\ 8) = ^ 8 for 8 = 1, . . . , ?) and covariance matrix Φ
(variances D0@7 (\ 8) = q 8 8 for 8 = 1, . . . , ? and covariances 2=D7 (\ 8, \9) = q 8 8′ for
8, 8′ = 1, . . . , ?; 8 ≠ 8′)

We then assume that the observed items/indicators �7 8 (for each observation
7, for each indicator from 8 = 1, . . . , >) are related to the latent factors \79:

�7 8 = U 8 + V 81\71 + V 82\72 + · · · + V 8?\7? + n7 8 (11.2)

\end{equation}
Note that it is easy to get your 7s, 8s, 9s, >s and ?s confused here, and there

are a lot of Greek letters to keep track of.3 Consistent with our notation 3 Notation for these models varies across
reference materials. My use of � here for
the observable data is idiosyncratic—it is
more typical to use F or G—but maintains
continuity both with our previous notation
in this book and with the way we were
thinking about these data as indicators of a
target concept rather than outcomes G or
explanatory variables F.

for PCA, we have > indicators. The number of latent factors ? will now be
smaller than > (in PCA, we had the same number of principal components
as indicators) thus the need for a new letter. The index 7 refers to differ-
ent units/individuals/observations, the index 8 refers to different indicators
for those units, the index 9 refers to different latent factors. The \7 are the
factors—an attribute of the units 7—and the U 8 and V 8 are parameters describ-
ing how particular indicators 8 relate to those factors.
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As you can see above, the model for each indicator value �7 8 is a linear model
depending on ? factors. This looks a lot like PCA, but backwards. Now the in-
dicators are a linear function of the factors instead of the principal components
being a linear function of the indicators.

One other thing that is different is that there is now an “error term” n7 8 for
each unit for each indicator lurking at the end. There was no error term in
PCA because we had the same number of principal components as indicators,
and so we could fully describe the data with the full set of components. Here,
we will no longer estimate enough latent factors to perfectly predict all obser-
vations in the data, and so there is a residual. We assume that n7 8 ∼ # (0, f 8) for
7 = 1, . . . , >, and that these error terms are uncorrelated with each other, and
uncorrelated with all the latent factors \ as well.

Factor analysis models are estimated in much the same way as regression
models. The details of estimation do not concern us here.4 The principal is that 4 For a more detailed treatment, see Chapter 7

of Bartholomew et al. (2008).we find the values of the latent factors ) and the loadings # that make it most
likely that we would have observed the data that we did in fact observe.

11.2.2 Properties

Because the items/indicators are assumed to be a function of all latent factors,
when we estimate a factor analysis model, all items and all observations con-
tribute to the scores for all factors. In influence of a given item/indicator 8 on
the factor 9 is higher when the coefficient V 89 of that factor 9 on that item 8 is
larger in magnitude. Note that in factor analysis models these coefficients are
typically called “loadings”.

The maximum number of factors (?) must be less than the number of indi-
cators (>), and most factor analyses focus on one or two factors. The numerical
values of the factors themselves \ are determined by further identification
assumptions because otherwise the scale of the model is not well defined by
the model specified thus far. First, we need to specify the scales of the factors.
The latent factors could just as easily run from -1 to 1 or -100 to 100 or 0 to 10,
they have no natural units. The most common convention is to set ^9 = 0 and
q99 = 1 for 9 = 1, . . . , ? so that all factors are standardised to have mean 0 and
variance 1.

However even this scale of latent factors does not fully resolve their values.
Suppose we start with 2 factors \71 and \72, and then transform them to 2 new
factors with the linear combinations

\∗71 = @11\71 + @12\72
\∗72 = @21\71 + @22\72

with some coefficients @11, @12, @21, @22. This transformation can be interpreted
as a rotation, a change of coordinate axes in the space of the factors. A rotation
changes the coefficients/loadings of the factors, and thus also the interpretation
of the factors. A rotation also changes the correlations of the factors and could
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make them entirely uncorrelated. Almost all rotations, with correspondingly
changed loadings, can produce exactly the same model for the observed items.
As a result, we can freely choose which rotation to use, but we also need to
remember that the choice is arbitrary when we pick one.

Factors are easiest to interpret when their loadings have a simple structure
where each factor has large magnitude loadings for some variables and small
(near 0) loadings for all the rest. With two or more factors, there are infinitely
many equivalent rotated solutions. With one factor, there are just two, which
are mirror image reflections associated with multiplying the factors by −1.5 If 5 Note the same issue here as with PCA.

Neither PCA nor factor analysis can mean-
ingfully determine which way is up and
which is down with respect to the concept
you want to measure.

the initial solution your software finds is difficult to interpret, potentially you
can find a more easily interpretable rotation of the factor space.

11.3 Application: Scaling Political Attitudes with Principal Components
Analysis

The face to face survey component of the 2017 British Election Study was
conducted after the election, and included (among many other items) the
following battery of questions about respondents’ political attitudes. Most of
these questions have been asked on BES surveys for decades, although a few of
them are more recent additions.

• I1. Ordinary working people get their fair share of the nation’s wealth
• I2. There is one law for the rich and one for the poor
• I3. Young people today don’t have enough respect for traditional British
values

• I4. Censorship of films and magazines is necessary to uphold moral stan-
dards

• I5. There is no need for strong trade unions to protect employees’ working
conditions and wages

• I6. Private enterprise is the best way to solve Britain’s economic problems
• I7. Major public services and industries ought to be in state ownership
• I8. It is the government’s responsibility to provide a job for everyone who
wants one

• I9. People should be allowed to organise public meetings to protest against
the government

• I10. People in Britain should be more tolerant of those who lead unconven-
tional lives

• I11. For some crimes, the death penalty is the most appropriate sentence
• I12. People who break the law should be given stiffer sentences

Imagine that we want to measure something about the political ideology
of respondents, and these questions are what we have to work with. In the
previous chapter, we talked about specifying coefficients/weights for particular
items. That would be difficult here because we did not design this battery of
questions to measure anything in particular, and they vary substantially in
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terms of topic. It is certainly not clear what the relative weights ought to be if
we wanted to aggregate responses in the ways we talked about last time. We
might be able to specify the sign of some of the coefficients/weights—based
on our expectations about which positions were on the political left and which
were on the political right—but it would be very difficult to determine the
relative magnitudes of the coefficients. Equal weighting, in this case setting
coefficients to either −1 or 1, seems inappropriate as well because it would
treat all these items as equally indicative of political ideology in the UK, which
seems unlikely.

So instead, it makes sense to “just ask the data” how the indicators relate to
one another. Which responses tend to go together in the data that we have?
Does this structure reveal anything useful about what concepts we might use
these data to measure?
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Figure 11.1: Pairwise correlations between
items on the BES 2017 12 question ideology
battery.

None of these items are particularly strongly correlated with one another.
The strongest correlations are @ = 0.45 between I11 and I12 and between I3
and I12. If we look at the cross-tabulation of responses to I11 and I12, we see
that responses to these questions, both of which involve punitiveness of the
criminal justice system, are still only moderately associated with one another.

If you look at the correlation plot carefully, you will start to notice that even
though none of the correlations are especially strong, there are some indicators
that seem to go together. For example, responses to I3 (“Young people today
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I12: SD I12: D I12: N I12: A I12: SA
I11: SD 35 109 155 82 47
I11: D 7 62 118 177 41
I11: N 3 14 80 128 39
I11: A 3 24 122 397 113
I11: SA 5 10 56 119 248

Table 11.1: Cross-tabulation of responses to
questions I11 and I12.

don’t have enough respect for traditional British values”) are most positively
correlated with those to I4 (“Censorship of films and magazines is necessary
to uphold moral standards”), I11 (“For some crimes, the death penalty is the
most appropriate sentence”) and I12 (“People who break the law should be given
stiffer sentences”). Those questions are also all positively correlated with one
another. None of them are as highly correlated, positively or negatively, with
any of the other questions. This kind of correlation pattern is indicative of a
data set where there is likely to be at least one strong principal component.
There is a set of questions which all seem to go together, which can therefore
be described relatively well using a single common component.

We now turn to applying principal components analysis to this data set.
The major pre-analysis decision for using PCA is whether to standardise the
indicators. The answer is usually yes, but in this case we will not do so. Unlike
many applications of PCA, here the items are already on a common scale: the
strongly disagree to strongly agree scale. All the questions were asked in a
bloc together. This means that the relative variance of responses on different
items is probably telling us something real about the extent of variation in
respondents’ attitudes on the different items. If, on one of the items, everyone
indicated that they agreed or strongly agreed, there is little variance in that
item because people mostly share the same views. If we do not standardise,
PCA will put little weight on explaining this slight variation in peoples’ views.
If we do standardise, PCA will put as much weight on explaining the variation
in this variable as others, but that means it will put just as much weight on
explaining these slight differences as the larger differences on other variables.
In this instance the results of PCA look very similar regardless of whether we
standarise or not, but the argument on the merits is against standardisation and
so that is how I will proceed.
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Figure 11.2: Screeplot for PCA on 12 BES
questions.

As you can see in Figure 11.2, the first two principal components have sub-
stantially higher variance than any of the others. Note, however, that they still
only explain 23 and 17% of the variation in the original data, respectively, leav-
ing 60 “unexplained”. As with '2 statistics, it is difficult to put a strict criteria
on how much variation explained is a lot and how much is a little. With survey
response scales like these, there is often a great deal of idiosyncratic variation
in how individuals use the response scales, and so it is difficult to ever explain
a great deal of the variation. Thus the major conclusion we can draw from the
screeplot is the relative explanatory power of the different factors. We can fo-
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PC1 PC2 Prompt
0.08 -0.39 Ordinary working people get their fair share of the nation’s wealth
0.16 0.49 There is one law for the rich and one for the poor
0.44 0.06 Young people today don’t have enough respect for traditional British values
0.35 0.02 Censorship of films and magazines is necessary to uphold moral standards
0.14 -0.34 There is no need for strong trade unions to protect employees’ working conditions and wages
0.10 -0.38 Private enterprise is the best way to solve Britain’s economic problems
0.04 0.42 Major public services and industries ought to be in state ownership
0.18 0.32 It is the government’s responsibility to provide a job for everyone who wants one
-0.06 0.21 People should be allowed to organise public meetings to protest against the government
-0.11 0.13 People in Britain should be more tolerant of those who lead unconventional lives
0.67 -0.07 For some crimes, the death penalty is the most appropriate sentence
0.37 0.02 People who break the law should be given stiffer sentences Table 11.2: Coefficients for first two principal

components on 12 BES questions.

cus our attention on the content of the first two principal components in this
instance.

11.3.1 Looking at the Coefficients/Loadings

Can we make sense of the first two principal components? Table 11.2 shows the
coefficients for the first two principal components for each of the 12 disagree-
agree items, alongside the prompts for those items. There are two things to
look at for each coefficient: sign and magnitude. The sign tells you whether the
principal component is positively or negatively correlated with responses to
the item. The magnitude tells you whether the principal component is strongly
or weakly correlated with responses to the item. Let’s start by looking at the
magnitudes.

Four of the items have larger magnitude coefficients on principal compo-
nent 1 (PC1) than principal component 2 (PC2), while eight have larger mag-
nitude coefficients on PC2 than PC1. The four with stronger loadings (larger
coefficient magnitudes) on PC1 are the four we already noted were positively
correlated with one another: “Young people today don’t have enough respect
for traditional British values”, “Censorship of films and magazines is necessary
to uphold moral standards”, “For some crimes, the death penalty is the most
appropriate sentence” and “People who break the law should be given stiffer
sentences”. The eight with stronger loadings on PC2 involve jobs, inequality,
the economy, privatisation, and economic redistribution. Of these, there are
two items, about public meetings and toleration, that load relatively weakly on
both dimensions but slightly more strongly on PC2.

Can we put labels on these dimensions? Very roughly, it seems that PC1
involves traditional/authoritarian values/questions, while PC2 involves eco-
nomic values/questions. We can see this more clearly by examining the signs
of the coefficients. PC1 is strongly positively correlated with (agreement with)
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“Young people today don’t have enough respect for traditional British values”,
“Censorship of films and magazines is necessary to uphold moral standards”,
“For some crimes, the death penalty is the most appropriate sentence” and
“People who break the law should be given stiffer sentences”. These all are in
the direction of tradition and authority. PC2 is strongly positively associated
with “There is one law for the rich and one for the poor”, “Major public ser-
vices and industries ought to be in state ownership”, “It is the government’s
responsibility to provide a job for everyone who wants one”, which are all sen-
timents that we might think of as on the political left, rather than the political
right. PC2 is strongly negatively associated with “Ordinary working people
get their fair share of the nation’s wealth”, “There is no need for strong trade
unions to protect employees’ working conditions and wages”, and “Private
enterprise is the best way to solve Britain’s economic problems”, which are sen-
timents associated with the political right. Thus, to be more precise, positive
scores on PC1 are more traditional/authoritarian, negative scores are less so.
Positive scores on PC2 are more economically left-wing, negative scores are
less so.

11.3.2 Looking at the Units/Observations

Remember our original statement of what the principal components were: they
are linear combinations of the original variables:

;71 = 011�71 + 021�72 + . . . + 0>1�7>
;72 = 012�71 + 022�72 + . . . + 0>2�7>

...

;7> = 01>�71 + 02>�72 + . . . + 0>>�7>

Thus, given the coefficients 0 and the observed responses in the data, we
can construct the principal component values or “scores” for every observation
in the data set (of which there are 2194). This is the measurement part of the
exercise: we have a way of scoring individual respondents to this survey on
what we now think are a traditionalism/authoritarianism scale as well as an
economic (right-)left scale.

How can we assess whether these scores are sensible? We do not know the
BES respondents, so doing face validity checks on individual respondents is
not going to work. Instead, we might look whether the scores are associated
with other relevant features of individuals in ways that we would expect. This
is an assessment of correlational or predictive validity.

The first predictive validity check we can do uses another 2017 BES question
which asked “In politics people sometimes talk of left and right. Where would
you place yourself on the following scale?” Figure 11.3 shows that responses to
this question are associated with both of the first two principal components:
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positively with the traditionalism/authoritarianism PC1 and negatively with
the economic (right-)left PC2. The association is somewhat stronger with
PC2. These correlations are not strong overall, which tends to be the case with
survey responses on questions like this because many people have only a vague
idea of political left and right and many people hold heterodox combinations of
political attitudes.
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function of Left-Right self-placement.

Another set of variables which we could use to assess predictive validity
are the political choices made by these respondents. How are the principal
components related to respondents’ votes in the 2017 UK general election
immediately preceding the survey? How are the principal components related
to respondents’ votes in the 2016 UK referendum on membership in the EU?
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Figure 11.4: Principal Components as a
function of 2017 and 2016 votes.

The left panel of Figure 11.4 shows the average position of 2017 voters for
the Conservatives (Con), Labour (Lab), the Liberal Democratis (LD) and the UK
Independence Party (UKIP) in the 2D space defined by the first two principal
components. 2017 Conservative voters and 2017 Labour voters differ primarily
with respect to Principal Component 2. We previously established that the co-
efficients indicate that higher scores on PC2 are associated with economically
left attitudes, and we indeed see Labour voters scoring higher than Conser-
vative voters in this “economic leftism” score. The difference on PC1 between
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Labour and Conservative voters is relatively slight; the bigger contrast is be-
tween Liberal Democrat and UKIP voters who more clearly differentiate on
PC1 than on PC2.

The right panel of Figure 11.4 shows the average position of 2016 voters
for Leave and Remain in the same 2D space defined by the first two princi-
pal components. 2016 Leave and Remain voters are almost identical on PC2
(the economic leftism dimension), but differ to a greater degree on PC1 (the
traditionalism/authoritarianism dimension).

These relationships all make sense directionally, but none are especially
strong. Correlational or predictive validity always provides a weak test. Lots of
things are correlated with lots of other things. If you see a moderate correla-
tion between vote choice and your measure of someone’s right-left or left-right
position, it could mean that vote is actually only weakly related to that concept,
or it might just mean that you did not measure it very well. In this case, we ef-
fectively guessed what concept we had measured after we did the data analysis.
It is possible that the measures we have are a mixture of what we guessed and
something else, or that we have mis-labeled the patterns that PCA revealed.

11.3.3 Consequences of Indicator Selection

There are many, many questions on the 2017 British Election study besides
the ones I included in this example (which come from one bloc of questions
in the middle of the survey). Imagine that we are only interested in economic
left-right preferences of voters. We might have simply looked through the
list of survey prompts, and only included 1, 2, 5, 6, 7 & 8, which are the ones
that clearly have something to do with the economic organization of society.
Those turned out to be the indicators that loaded most heavily on PC2 in our
analysis above, but if we had only wanted to measure something specific about
economic attitudes, it would have made sense to limit the analysis to those
items only. We could then have either used some of the techniques from last
chapter on those items (such as simple equal weighting, inverting some of the
items as appropriate) or we could have applied PCA to that more limited set of
items.
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If we apply PCA to just those six items, we end up with a single strong
principal component rather than two. That first principal component is highly
correlated with our old PC2 from the initial analysis of all 12 items that we have
been looking at up until now. Mathematically this is not a surprise, we have
in fact selected the items that had largest magnitude coefficients on PC2, and
excluded the items that had largest magnitude coefficients on PC1. Since PCA
just wants to explain variance, the old PC2 becomes the new PC1. They differ
slightly because the loadings for the omitted items were not exactly zero, and
the loadings on the included items change a bit, but in this case the correlation
between our old measure of economic right-left sentiment based on twelve
items and our new one based on six items is very strong.

You will notice that the direction of the scale flips. Again, it is important to
emphasise that this is entirely arbitrary. At no point did we indicate whether
we wanted a left-right scale or a right-left scale. As discussed earlier, the com-
puter just picked a direction arbitrarily. So if you do not like how we initially
had PC2 with the political left as positive values and the political right as neg-
ative values, you could just multiply all the 082 by −1 to have left as negative
values and right as positive values.

11.4 Application: Scaling Political Attitudes with Factor Analysis

What happens if we use factor analysis instead of principal components anal-
ysis on the 12 BES ideology items? Table 11.3 reports factor loadings from R’s
default factanal() implementation of factor analysis, which uses a “varimax”
rotation which tends to yield results similar to PCA. The patterns of loadings
look broadly similar to the patterns of PCA coefficients we saw earlier on the
same data. There are some differences; while there are again the same four is-
sues that “load strongly” on factor 1 and five issues that load strongly on factor
2, the item about government responsibility for offering jobs now loads equally
on both dimensions. But the differences from what we find with PCA are not
large, and the results of using factor analysis tell the same substantive story
about the correlations in the data. People tend to give correlated responses to
the four traditionalism/authoritarianism items and they tend to give correlated
responses to the five/six economic items.

If we look at the factor scores, the \7s for each survey respondent 7, we see
that they are very highly correlated with the PCA scores. These two methods
are measuring almost the same thing in this application. This is often true,
although not always.

It is worth remembering that PCA and EFA are more conceptually differ-
ent than practically different. PCA summarises variance in the indicators as
efficiently as possible in terms of components that are linear functions of the
indicators. FA is an effort to identify the latent factors that would have been
most likely to generate the indicators, if in fact the indicators were generated
by latent factors according to a specified linear model. This means that they are
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F1 F2 Prompt
0.06 -0.47 Ordinary working people get their fair share of the nation’s wealth
0.29 0.53 There is one law for the rich and one for the poor
0.67 0.01 Young people today don’t have enough respect for traditional British values
0.48 -0.05 Censorship of films and magazines is necessary to uphold moral standards
0.15 -0.42 There is no need for strong trade unions to protect employees’ working conditions and wages
0.10 -0.49 Private enterprise is the best way to solve Britain’s economic problems
0.09 0.43 Major public services and industries ought to be in state ownership
0.24 0.24 It is the government’s responsibility to provide a job for everyone who wants one
-0.05 0.34 People should be allowed to organise public meetings to protest against the government
-0.16 0.22 People in Britain should be more tolerant of those who lead unconventional lives
0.64 -0.13 For some crimes, the death penalty is the most appropriate sentence
0.66 -0.04 People who break the law should be given stiffer sentences Table 11.3: Factor loadings for two factor

model on 12 BES questions.

PC1 PC2 F1 F2
PC1 1.00 0.00 0.97 -0.13
PC2 0.00 1.00 0.11 0.98
F1 0.97 0.11 1.00 -0.01
F2 -0.13 0.98 -0.01 1.00

Table 11.4: Pairwise correlations of respon-
dent scores from Principal Components
Analysis (first two components) and Ex-
ploratory Factor Analysis (two factor model,
varimax rotation).

both trying to provide a “simple” summary of the correlations across variables
in the data. As a consequence, when they are applied to the same data, they do
tend to yield similar conclusions (at least if you pick the right factor rotation).

11.5 What are we measuring?

As noted earlier in this chapter, we have seen this kind of practical similarity
between conceptually distinct methods before. Tallying up win/points in
competitions (a transformation of the data like principal components analysis)
gives results that are similar to fitting a Bradley-Terry model (a latent variable
model like factor analysis). Before this course, you implicitly have seen this in
linear regression, which can be motivated in two ways. One way is as a simple
“summary” transformation of the data: the linear projection of the observed
G onto the explanatory variables F that minimises the sum of square errors.
The other way to motivate a linear regression is on the basis of a “generative”
model for G as a linear function of F with normally distributed errors. For
linear regression these two motivations give numerically identical answers; in
the cases we have looked at in this course the analogous situation has yielded
approximately the same answers from different methods.

More broadly, we often have a choice between an approach based on the
logic of summarising a(n indicator) data set in a simple way and an approach
based on estimated parameters from a model that could have generated the
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observed data. When we looked at Bradley-Terry models, we already saw
some of the advantages and disadvantages of the “summary measures” versus
“generative measures” approach to description. Summary approaches tend
to be simpler to implement, faster to compute, and clearly limited in their
interpretation. Generative approaches tend to be more flexible and to provide
a direct way of describing uncertainty about measures, while also being more
demanding to think about, more computationally demanding, and also to risk
over-interpretation.

The risk of over-interpretation is one that I highlighted back in the dis-
cussion of Bradley-Terry models, but a significant part of ugly history of the
misuse of social measurement that I described in Chapter 1 involves factor
analysis methods specifically. Because factor analysis models are structured
around the idea that the indicators are produced by the latent factor, they often
tempt people to make causal claims that would be difficult to justify if they
thought carefully about the problem. Again, think back to linear regression
here. If you “believe” in the linear generative model, it looks like a causal model
for how G is generated by F. Surely that means that if you change F 8 by 1 unit,
it will change G by V 8, right? This is almost never justified by running a re-
gression unless F was randomly assigned, but people make this mistake all the
time.6 It is far safer to view the regression model as a summary of the variation 6 Please put down this book and go read

a modern causal inference textbook like
Morgan and Winship (2015) if you do not
know why such a claim is unjustified.

in G conditional on F, without causal assumptions. The same point holds here:
you do not need to “believe” in the factor to do factor analysis and for it to be
useful as a summary of the data. Nonetheless, it is almost always a mistake to
adopt a causal interpretation of the factors.7 The factors do not really exist just 7 If you have a credible way to argue that

the factors—the latent variables—were
randomly assigned to units, by all means go
ahead and make the causal interpretation.
I have never seen an application where
this was plausible, but perhaps one exists
somewhere.

because you happened to fit a model with factors in it. Do not reify the factors!
What would reifying the factors mean in this context? It would mean be-

lieving that people are walking around with an underlying degree of tradition-
alism/authoritarianism and a degree of economic leftism because those are the
labels that seem to describe the output of the factor analysis or principal com-
ponent analysis. This does not follow, indeed it is wrong for the same reasons
that a non-zero V 8 coefficient in a linear regression model does not imply a
causal effect of F 8 on G. In the regression context, all you have demonstrated
is that there is a partial association of F 8 with G given a model with some set
of other F variables in a given set of units. That may be because changes in F 8
cause linear changes in G, given levels of those over variables, but it could also
be for a variety of other reasons having to do with omitted F 8′ that have causal
effects on G and which are correlated with F 8, causal effects of G on F 8, sample
selection mechanisms that depend on F 8 and G, and further more complicated
mechanisms.

In the factor analysis context, the fact that a set of variables are correlated
with one another does not mean that they are all the product of a single com-
mon latent factor. They may have causal relationships with one another, or
they may be the product of many latent influences. Leaping to completely un-
justified causal inferences is easily the most common mistake that people make
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in interpreting factor analysis models.

11.6 The Thomson critique

To see that the fact that a set of variables are positively correlated with one
another does not mean that they are all the product of a single common latent
factor, it is helpful to see an example where such patterns arise in a different
way. In 1916, Godfrey Thomson wrote two papers offering a critique of factor
analysis, and specifically Spearman’s claims that certain patterns of correla-
tions between items/indicators implied the existence of a “General Factor” in
intelligence tests. In “A Hierarchy Without a General Factor”, Thomson (1916)
writes “The object of this paper is to show that the cases brought forwards by
Professor Spearman in favour of the existence of General Ability are by no
means ‘crucial’. They are it is true not inconsistent with the existence of such
a common element but neither are they inconsistent with its non-existence.”
The argument is a general one, and has nothing in particular to do with the
intelligence testing case, and so I will illustrate the core theoretical point here
using a different application.8 8 This discussion was inspired by a blog post

“g, a Statistical Myth” by Cosma ShaliziLet us carry on with an example of political ideology like those considered
earlier in this chapter. Let us hypothesize that, contra much writing about
politics, there is no single factor that governs the left-right political ideology
of individuals. Rather, let us imagine that when thinking about the structure
of the economy and the role of government, people actually have a variety
of intuitions about questions that are relevant to many individual items. For
purposes of our example, let’s say that there are six of these “intuitions” that
commonly influence how people assess individual policy questions related to
the economy and redistribution:

1. To what extent we are not worried by inequality of outcomes.
2. To what extent we should worry about moral hazard or the “Samaritan’s

dilemma”.
3. To what extent we think people are motivated by personal gains as opposed

to the gains of others.
4. To what extent we think people have meaningful equality of opportunity in

our society right now.
5. To what extent we think that the most important goods are private rather

than public goods.
6. To what extent we value individual’s freedom of economic association and

activity.

These are a mixture of normative commitments and factual beliefs, but they
all might contribute to one’s views about concrete economic policy questions. I
have written them all so that positive corresponds to views that might motivate
more right-leaning economic policy views and negative corresponds to views
that might motivate more left-leaning economic policy views. But any given

http://bactra.org/weblog/523.html
https://en.wikipedia.org/wiki/Moral_hazard
https://en.wikipedia.org/wiki/Samaritan%27s_dilemma
https://en.wikipedia.org/wiki/Samaritan%27s_dilemma
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economic policy question might only implicate a subset of these. For example,
if we are thinking about the benefits of increasing baseline welfare benefits, for
example via a universal basic income, this would heavily implicate intuitions
1, 2, and 4, but perhaps have little direct relationship to 3, 5 and 6. If we were
evaluating a general tax increase to invest in public transit infrastructure, this
might primarily implicate 2, 4, 5, and 6. If instead, we were thinking about
instituting a carbon tax to address climate change, this might only implicate 5
and 6.9 9 You could easily quibble with the details of

these examples, but exactly which intuitions
are relevant to which policies is not really the
point. The important thing is that different
policies might be related to different subsets
of these intuitions.

Let’s imagine that in the general population, these six intuitions are inde-
pendently distributed. That is to say, they are uncorrelated with one another.
For purposes of doing some illustrative simulations, let’s say they are indepen-
dently and identically distributed standard normal # (0, 1).

Now imagine that you watch politics for a while, and a sequence of policy
questions are raised and a subset of this population is polled regarding their
views on each of these policy questions. An individual 7’s views on a given
policy question 8 are given by a linear function of the relevant subset of their
intuitions 9 for that policy, plus an idiosyncratic term, as follows. Where W98 ∈
0, 1 is the irrelevance/relevance of intuition 9 to policy 8, and [79 ∼ # (0, 1) is
individual 7’s intuition 9, their view10 �7 8 on policy 8 is: 10 This is the same kind of observable “in-

dicator” or “item”, the measured view of
respondent 7 on policy 8, that we had in our
earlier examples in this chapter, thus the
same notation �7 8 I have used previously.
What is different is the process that we are
hypothesizing might have generated what we
observe.

�7 8 = W18[71 + W28[72 + W38[73 + W48[74 + W58[75 + W68[76 + n7 8 (11.3)

Finally, to enable us to simulate data, let’s assume that each policy 8 impli-
cates underlying intuitions independently and with equal probabilities of 1/2.
So W98 are independently and identically Bernoulli distributed with parameter
1/2, ie coin flips. I simulate 1000 individuals from this population, expressing
views across 400 issues. I then plot the screeplot and I get Figure 11.6, which
very clearly indicates that there is one very strong principle component, five
much less strong principle components, and very little beyond that.
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Figure 11.6: Screeplot for PCA on simulated
data.

The fact that there are six components is correct, given how we simulated
the data, but the fact that there is one very strong principle component is
surprising and potentially misleading. The simulated data were formed from
six “economic intuitions”, each of which had the same average contribution
to the observed data across the items and individuals in the data. Why does
PCA tell us there the first principle component is massively more important
than any of the following five? To understand this, it is helpful to look at the
correlations between the first principle component that we recovered and the
six intuitions that we used to generate the observable data.

Figure 11.7 shows that, aside from a bit of random simulation noise, the six
intuitions are indeed uncorrelated with one another at the individual level.
However, each of them is correlated with the first principle component at
correlations of about 0.4 (again, with some variability due to the simulation).
The first principle component is almost exactly equal to the average of the six
intuitions [̄. Principle components analysis simply aims to explain as much
variation as possible with the first component, and then with each additional
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Figure 11.7: Association of each of the six
economic intuitions with the average
intuition and the first principle component
(PC1)

factor given the previous ones. The individual-level average of the six intu-
itions is the best single number predictor of an individual’s response given the
way we have set up the problem, and it is indeed a far better predictor than any
further single number predictor that you can add to it as a second (or further)
principle component.11 11 I have made all six intuitions have equal

variance and equal average coefficients for
�7 8 for purposes of exposition, but the same
basic finding would persist with the first
principle component as a weighted average of
the intuitions if these were instead unequal.

What have we learned? In this example, principle components analysis will
discover a strong first principle component even where, by construction, we
know that there were six equally important components of the data generating
process. That is, in a world where the observable policy views of individuals
were equally shaped by six different, equally important and uncorrelated eco-
nomic intuitions, when we run principle components analysis we still see one
very strong first principle component. Thus, the single most important lesson
here is that having a strong first principle component does not demonstrate that
there is a single strong factor shaping the process that generated the data at the
individual level.

If you did not recognise this, and you looked at this analysis, you might
be tempted to conclude that respondents “really are” characterised by having
a left-right position, as we can construct such a position (PC1) that predicts
a lot of the response variation. But that is clearly not the case given how we
generated the data. We can indeed summarise a good fraction of the response
variation by creating a summary that we call left-right position, but that is
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not actually what was happening in our simulated respondents’ minds as they
formed positions across different policy questions.

But perhaps this is just a pathology of principle components analysis? What
if we examine the same problem using factor analysis, which more closely
matches the data generating process for these data. Indeed, if you compare
Equation 11.3 and Equation 11.2, you will see that our six intuition model is in
fact a case of the general factor analysis model. The intuitions are the factors.
Do we get the right answer in this instance?

The answer turns out to be almost yes, so long as we fit a factor analysis
model with a sufficient number of factors and we have enough data. Figure
11.8 shows that in a factor analysis model fit with a single factor, that factor
explains nearly 40% of the variance in the responses. If we only fit the one
factor model, we will tend to spuriously conclude there is a single strong
factor, as we did when we used principle components analysis. But when
additional factors are added (here using a “varimax” rotation of the factor
space), the tendency is to have factors that explain similar amounts of variation
up until one arrives at a model with at least six factors, after which adding
further factors has negligible consequences. While there is still some tendency
to find that some factors are stronger than others, this is due to small sample
variation that makes some factors more predictive in the sample by chance.
This bias goes to zero with increasingly large data sets generated in the way I
have described.
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Figure 11.8: Variances explained by each factor
for factor analysis models with different
numbers of factors.

The single factor model is, however, spectacularly biased with respect
to how much variation any single intuition actually explains, for much the
same reason that the principle components analysis yields a very misleading
screeplot. In this toy example, the single factor model estimates a factor that
explains 37% of the variance in the response data, but in fact by construction
each intuition only explains 1/7th or 14% of the variation in the population-
level response data. It is really easy to convince yourself that there is a strong
single factor generating the response data, even when there is not. In this
instance adding more factors fixes this bias, but this is not always true.

Unfortunately this is not one of the more difficult cases for factor analysis to
get the right answer, instead this is actually an unrealistically easy case. Nearly
all of the variation in the data (6/7ths) is explained by a relatively small number
of factors (6). We have a large number of data points (200) for each of a large
number of individuals (1000). If, for example, we reduce the number of data
points per individual to 20, our ability to identify that there are actually six,
roughly equally important factors completely disappears. Figure 11.9 shows
a typical case of what happens with what is still a fairly large number of re-
sponses per individual relative to many applications (there is a lot of random
variation from sample to sample).
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Figure 11.9: Variances explained by each factor
for factor analysis models with different
numbers of factors, with reduced number of
responses per individual.

The tendency of factor analysis is to produce plots that look like 11.9, under
a wide range of data generating processes and quantities of data, often with
even steeper drops from the first to the second factor. Principle components
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analysis is more or less guaranteed to generate plots that look like this. As
a consequence, it is extremely important not to make inferences from the
relative variance explained of principle components or factors to the number
of “true” underlying factors that generated the data.

Thomson’s critique observed that factor analysis tended to produce a strong
first factor even when there were a relatively large number of underlying true
factors that generated the data. His papers are partly focused with the me-
chanics of simulating such data using the technology available in 1916 (playing
cards!). Sadly, this critique has been little appreciated by users of factor analysis
in the century since it was made. The issue isn’t specific to generating data with
a large number of factors, there are many other underlying processes that will
generate data that will generate a strong single factor model and first princi-
ple component.12 But it is worth noting that the “many influences” model is 12 “It has been known for almost as long as

factor analysis has been around that positive
correlations can arise in many ways which
involve nothing remotely like a general
factor. . . Thomson’s ability-sampling model,
with its myriad independent causes rather
than a single general cause, is the oldest and
most extreme counter-example, but it is
far from the only one.” g, a Statistical Myth,
Cosma Shalizi

both one justification for normal error terms via the central limit theorem and
extremely plausible for any social/psychological process involving humans.
We should expect lots of things to matter when we study complex systems,
and so we need to be very careful when we apply methods that tend towards
providing simple explanations not to reify those simple explanations. It may be
convenient to summarise someone’s views with a left-right position, but that
does not mean that they really have a left-right position.

11.7 Conclusion

So, having made the point about what these techniques do not license you to
say, what are they good for? One answer is that they are good for exploring
data sets (it is called “exploratory” factor analysis, after all). We can use these
methods to find summarymeasures that describe variation in a data set as sim-
ply as possible. You also might come at the question from the other direction.
Why wouldn’t you always do it this way? Why did we bother with the material
in the previous chapter? Why ever use equal or expert-specified weights when
you can “just” measure the weights from the data?

The fundamental limitation of principal components analysis and factor
analysis is that we are measuring what explains the most variation in the data,
not what best represents any concept we might be interested in. We have no
direct control over what PCA/EFA are measuring. The dimensions/factors
that explain variation best in a given set of indicators maybe the concept we
wanted to measure. Or they may be a mixture of what we want to measure
and something else. Or they may be other things entirely. We have indirect
control over what the methods are measuring because we determined the set of
indicators that went into the estimation. Nonetheless, this is a very imprecise
sort of control over what is being measured.

In the preceding chapter we discussed an example where Floridi and Laud-
erdale (2018) used a conjoint experiment in which experts on the demographic
concept of productive aging were asked whether hypothetical individuals who

http://bactra.org/weblog/523.html
http://bactra.org/weblog/523.html
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engage in varying degrees of paid work, volunteering, grandchild care and
care for sick/disabled adults are more or less productive than other such hypo-
thetical individuals. The indicators in that example were the extent to which
individuals did more or less of these activities. The desired concept, produc-
tive aging, is meant to be increasing in all these activities. The question is not
whether some of these activities are productive or unproductive, but rather
how much productivity to associate with the different levels of these activities.

But people have time constraints. Someone who does 40+ hours a week
of paid work is going to have difficulty spending much time on the other
activities, and vice versa. As a result, a lot of the variation in the data from
that study is about which activities individuals participate in, not just how
much they do overall. As a result, the first principal component for data on the
various activities largely reflects whether individuals are in paid work versus
the other kinds of activities (Floridi and Lauderdale, 2018). But the goal of the
measurement exercise was to measure how productive they were overall, not
to measure which types of activities people were productive in. The goal was
not to find what explained the most variation in the data, it was to measure a
particular concept of interest. This is a case where PCA or Factor Analysis give
you the wrong answers because they ask the wrong question. They give you an
efficient summary of variation in the data, but that summary may not be what
you wanted to measure.

Both PCA and EFA can measure the wrong thing, at least if there was some-
thing in particular that you wanted to measure. Just because you want to mea-
sure a certain concept does not mean the thing that explains the most variation
in your set of indicators will be that concept. This is certainly true if you did
not design the indicators around that concept, and it can even be true if you
did. Indeed, you might say it is vanishingly unlikely that it will be exactly the
concept you want! Thus, the safe interpretation of PCA/EFA is that you have
recovered dimension(s) that explain as much variation in the indicators in as
simple a way as possible. Whether that is what you wanted to measure will
depend a lot on whether you collected indicators for which the primary source
of common variation was the desired concept, and not some other concept(s).

Finally, PCA and EFA present us with a first example of an issue we will
have to face repeatedly in the coming chapters. How many components or
factors or dimensions do we want? This is a persistently difficult question in
unsupervised measurement models. In supervised models, where you set out
to measure a certain thing or certain set of things, this is not an issue. But if
you are asking the data for a simple measure or set of measures that explains as
much of the variation as possible, determining how simple is a difficult thresh-
old to set. The screeplot for PCA, and analogous measures of relative fit for
EFA models with different numbers of factors, are statistical criteria. Statis-
tical criteria tell you about how much variation in the data you can describe
with different numbers of components/factors/dimensions. Adding compo-
nents/factors/dimensions until the fit to the data stops improving very quickly
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is a reasonable approach in many contexts, but it is important to keep in mind
that it will not tell you whether the components/factors/dimensions that you
have recovered are useful or interpretable for your purposes.



12
Unsupervised Scale Measurement with Categorical Indica-
tors

Principal components analysis and exploratory factor analysis assume that
indicator variables are measured at an interval-level. If this were not the case,
assuming linear relationships between those variables and the principal com-
ponents or latent factors would make little sense. In the example used in the
last chapter, where the data were a scale from strongly disagree to strongly
agree, this assumption was a stretch. It is not clear that respondents use such a
scale in an interval-level way.

In this chapter, we will be looking at corresponding measurement methods
for ordinal and nominal-level categorical response data. Thus, this chapter
is the analogue of the move from linear regression to the various limited de-
pendent variable regression models—binary logistic, ordinal logistic, etc—for
factor models. In this chapter, we will focus on generative models for how the
indicators might depend on latent variables. In addition to these unsupervised
generative models, there are unsupervised summary methods for categorical
data for example see correspondence analysis (Benzecri, 1973), but they lack the
straightforward interpretation of PCA, and so we will not cover them here.1 1 These methods are particularly useful in

very large data sets where computation
becomes a problem for methods based on
generative models.

Item Response Theory is a term used to describe a broad class of factor-
analysis-like models for limited dependent variables with many variants. We
will focus on a couple of the most general and widely used item response
models in this chapter. The canonical applications of IRT models relate to
educational testing as well as indicator data that comes from items on question-
naires that are designed to measure attributes of survey respondents. The term
item is simply the domain-specific version of the term “indicator” that we have
been using throughout this book. Nonetheless, the models are far more general
than these applications for which they were initially developed, and have been
used widely across many social science fields.

Recall the linear factor model from the previous chapter. We described
a factor analysis model where each observation 7 had ? latent factors )7 =

(\71, \72, . . . , \7?). Today, we are going to simplify a bit and just focus on models
with a single latent factor \7 for each observation.

https://en.wikipedia.org/wiki/Correspondence_analysis
https://en.wikipedia.org/wiki/Item_response_theory
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Last time, for a one factor model, we assumed that the observed items/indicators
�7 8 (for each observation 7, for each indicator from 8 = 1, . . . , >) were related to
the latent factors \7:

�7 8 = U 8 + V 8\7 + n7 8 (12.1)

Recall again that the index 7 refers to different units/individuals/observations,
the index 8 refers to different indicators for those units, and we have just one
latent factor so we do not need a third index. As you can see above, given the
value of the latent factor \7, the model for each indicator is just a simple linear
model. Figure 12.1 shows examples of the implied relationship between �

[
�7 8

]
and \7 for U 8 = 0 and V 8 = 1 (solid line) and for U 8 = 1 and V 8 = −0.5 (dashed
line).
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Figure 12.1: Linear item response (factor
model) as a function of unit-level latent
variable \7 .

12.1 Binary Item Response Model

Assuming that the indicators will be linearly associated with the latent variable
is sensible if the indicators are continuous variables, but often they are binary
or categorical. In such cases, using factor analysis is analogous to applying lin-
ear regression as a “linear probability model” for a binary dependent variable.
It may be a reasonable approximation, but it also can fit poorly and make in-
valid predictions of probabilities outside of the range between 0 and 1. Just as
logistic regression and its variants were useful for better describing the likely
associations between various explanatory variables and a binary/categorical
dependent variable, item response models describe associations between the la-
tent variable \7 and the indicators �7 8 in terms of these same logistic functional
forms. We can simply take our factor model above, and replace the left hand
side with the same log-odds formulation that generated a logistic regression
from a linear model.

log
(
>(�7 8 = 1)
>(�7 8 = 0)

)
= U 8 + V 8\7 (12.2)

Figure 12.2 shows examples of the implied relationship between �
[
�7 8

]
and

\7 for U 8 = 0 and V 8 = 1 (solid line) and for U 8 = 1 and V 8 = −0.5 (dashed
line), the same parameter values as in the linear factor model depicted in Figure
12.1. The comparison illustrates the commonalities between the assumptions of
factor models and item response models, as well as the difference in functional
form.
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Figure 12.2: Binary logistic item response as a
function of unit-level latent variable \7 .

By convention, these models are sometimes parametrised using the alterna-
tive form where U is the F-intercept rather than the G-intercept:

log
(
>(�7 8 = 1)
>(�7 8 = 0)

)
= V 8

(
\7 − U 8

)
(12.3)

This form enables a more useful interpretation of U 8 as the “difficulty
parameter” for indicator 8 and V 8 as the “discrimination parameter”. Un-
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der this parameterization, U 8 is the value of the the latent variable \7 where
>
(
�7 8 = 1

)
= 0.5. Higher values of U then correspond to items with “higher

difficulty”, where higher values of the latent variable \7 are required in order to
make �7 8 = 1 probable. Note that this interpretatation really only makes sense
if all/most of the V 8 are positive, which is to say that higher probabilities of
�7 8 = 1 are consistently associated with higher levels of the latent variable \7 for
all/most indicators 8.

One application where this is true, and where the difficulty/discrimination
language comes from, is standardized educational testing. One of the goals of
standardized test design is to have test items (indicators) that cover a range of
difficulties, but which all have high discrimination. That is, you want them all
to test the same latent factor (“understanding of the material”) but for some
to be relatively easy (indicating a minimal level of understanding) and for
others to be more difficult (indicating a higher level of understanding). You
may also run across a simpler version of the item response model (the “Rasch
model” or “one parameter logit model”) which sets all V 8 = 1. This assumes, a
priori, equal responsiveness of all the indicators to the latent variable. There is
little reason to apply this model unless you have only a small number of units.
Assuming that all items respond to the latent scale equally is an assumption
you can make, but it rarely makes sense to do so unless you have to. We will
see below some examples where the values of the V 8 are similar, but where we
nonetheless learn something useful by comparing them rather than assuming
they are all identical.

12.2 Ordinal Item Response Model

We can extend this model to ordinal categorical indicators in exactly the same
way that binary logistic regression extends to ordinal logistic regression. This
model is often called a “graded response model” (Samejima, 1969), referring to
the educational testing origins of these techniques. Just as you can have a test of
items that individuals get right (�7 8 = 1) or wrong (�7 8 = 0), you can also have
“graded responses” for any number of ordered levels �7 8 = 1, 2, 3, . . ..
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Figure 12.3: Ordinal logistic item response
curves for a four level ordered response
variable as a function of unit-level latent
variable \7 .

As with the ordinal logistic regression model, ordinal item response models
or graded response models are based on a linear model for the log-odds of
being above or below each of the thresholds in the ordered categorical vari-
able. The model makes a proportional odds assumption that there is the same
slope/discrimination parameter V 8 but different intercepts U 89 for each thresh-
old on a given item 8:

log
(
>(�7 8 > 9)
>(�7 8 ≤ 9)

)
= V 8

(
\7 − U 89

)
(12.4)

Figure 12.3 shows the implied item response curves for being above, as
opposed to below, a given response level, as a function of the latent factor \7 for
two example items, one with four levels (and thus three curves) and one with
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three levels (and thus two curves). The curves for a given item are “parallel”
to one another, as the model assumes (the proportional odds assumption) that
increasing the latent factor value is associated with increasing (solid lines) or
decreasing (dashed lines) the odds of being at all higher levels relative to all
lower levels. Increasing the latent factor \7 cannot increase (or decrease) the
probability of the more extreme levels of the item response at the expense of
the interior levels, for example.

Notice that if there are only two levels for a given indicator, this model re-
duces to the binary logistic response model. Further, there is no requirement
that different indicators have the same number of items. It is straightforward
to extend item response models to other types of responses (unordered cate-
gorical, count, etc) in ways that are analogous to regression models. Some of
these are implemented in R packages and other statistical software, while other
extensions require custom modelling that is beyond the scope of this course.

12.3 Application - PHQ-9 Depression Screening

The Patient Health Questionnaire-9 (PHQ-9) is a 9 question survey instrument
that was designed to provide an initial screening test for depression. The PHQ-
9 is used by the NHS in the UK as well as widely in the US and elsewhere
around the world. It has its own Wikipedia page. All of the questions on the
instrument are of the same form:

Over the last 2 weeks, how often have you been bothered by the following prob-
lems:

• I1. little interest or pleasure in doing things?
• I2. feeling down, depressed, or hopeless?
• I3. trouble falling or staying asleep, or sleeping too much?
• I4. feeling tired or having little energy?
• I5. poor appetite or overeating?
• I6. feeling bad about yourself – or that you are a failure or have let yourself
or your family down?

• I7. trouble concentrating on things, such as reading the newspaper or
watching TV?

• I8. moving or speaking so slowly that other people could have noticed?
Or the opposite – being so fidgety or restless that you have been moving
around a lot more than usual?

• I9. thoughts that you would be better off dead or of hurting yourself in some
way?

The response options for each item are:

• Not at all (0)
• Several days (1)
• More than half the days (2)

https://en.wikipedia.org/wiki/PHQ-9
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• Nearly every day? (3)

The instrument is then used to generate a score on a 0-27 scale, by assigning
0, 1, 2, or 3 points for each of the four response options shown above respec-
tively, for each of the 9 items, and then summing. Thus, the standard way that
the data are translated into a scale is through a “sum score” of points assigned
for each response. This is extremely convenient for the use of the instrument
as a diagnostic instrument, in a way that fitting a model could never be. The
reason that it is useful to go ahead and explore such data with item response
models is that it is helpful for assessing the extent to which the responses actu-
ally are associated with a common underlying dimension of variation (a factor).
We will use the point totals as a comparison for the value of \7 that we recover
from estimating the item response models.

12.3.1 NHANES Data

We are going to look at data on responses to these nine items from the 2015-16
US National Health and Nutrition Examination Survey (NHANES):

The National Center for Health Statistics (NCHS), Division of Health and Nu-
trition Examination Surveys (DHANES), part of the Centers for Disease Control
and Prevention (CDC), has conducted a series of health and nutrition surveys
since the early 1960’s. The National Health and Nutrition Examination Sur-
veys (NHANES) were conducted on a periodic basis from 1971 to 1994. In 1999,
NHANES became continuous. Every year, approximately 5,000 individuals of
all ages are interviewed in their homes and complete the health examination
component of the survey. The health examination is conducted in a mobile ex-
amination center (MEC); the MEC provides an ideal setting for the collection
of high quality data in a standardized environment. Details of the design and
content of NHANES and the public use data files are available on the NHANES
website.

12.3.2 Applying the Binary Item Response Model

We begin by fitting the binary response model to the PHQ-9 data in NHANES,
setting “Several days”, “More than half the days” and “Nearly every day” re-
sponses equal to 1, and “Not at all” responses to 0. This means we are ignoring
differences in intensities, and just focusing on whether someone is bothered
at all by each of the nine problems listed in the PHQ-9 instrument. We will
apply the ordinal response model to these data, using all four levels, once we
fully understand the outputs of the binary response model. Table 12.1 shows the
estimates for the “difficulty” (U) and “discrimination” (V) parameters describing
each of the nine items.

What can we learn by looking at these coefficients directly? First, we can
see that all the items have discrimination parameters V 8 that are positive. This
means that the latent variable / factor that we are estimating is positively
associated with all of these indicators. Put differently, there are positive corre-
lations between all of these indicators in the data set. If they were all indicators

https://wwwn.cdc.gov/nchs/nhanes
https://wwwn.cdc.gov/nchs/nhanes
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Difficulty Discrimination
I1 0.84 2.07
I2 0.81 3.18
I3 0.45 1.57
I4 -0.07 1.91
I5 0.95 1.56
I6 1.17 2.75
I7 1.34 1.89
I8 1.69 1.94
I9 2.20 2.48

Table 12.1: Item parameters for binary logistic
item response model fit to dichotomised
NHANES PHQ-9 data.

of depression, this is what you would expect to see. It is not surprising here,
since this is a measurement instrument that has been designed to assess depres-
sion.

Second, we can see that the difficulty parameters are roughly ascending.
Because our model is parameterised as

log
(
>(�7 8 = 1)
>(�7 8 = 0)

)
= V 8

(
\7 − U 8

)
the difficulty parameters U tell us the level of \ at which respondents were
equally likely to give a response corresponding to �7 8 = 0 (“Not at all”) and a
response corresponding to �7 8 = 1 (“Several days”, “More than half the days”
or “Nearly every day”). Thus, these values tell you something useful about the
relative frequency of different indicators of depression. The indicators with
“higher difficulty” are rarer and indicate higher levels of the latent variable.
Again, this is not surprising. The final items, particularly I9, are problems that
are both relatively rare in the data and which are likely to be accompanied by
many of the other indicators.

We can see this clearly in the raw data. For example, if we cross-tabulate
I4 (“feeling tired or having little energy?”) and I9 (“thoughts that you would be
better off dead or of hurting yourself in some way?”), we see that I4 is far, far
more common than I9:

I9 No I9 Yes

I4 No 2440 24
I4 Yes 2523 169

But crucially, we also see that I9 (“thoughts that you would be better off dead
or of hurting yourself in some way?”) is far more common among those who
experience I4 (“feeling tired or having little energy?”) than among those who do
not. The comparison here is between the top row and the bottom row of the
table. Among those who did not experience I4, only 1% experienced I9; among
those who did experience I4, 6% experienced I9. I9 is rare, so neither of these
numbers are high, but in the raw data we can see that the I9 is far higher among
those who experienced I4, which (along with similar patterns for the other
items) is why we see both items with high discrimination parameters.
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Figure 12.4: Item response curves for bi-
nary logistic item response model fit to
dichotomised NHANES PHQ-9 data.

Figure 12.4 shows how the model describes these relationships. The plot
illustrates the “item response curves” for all nine indicators, which are the fitted
values (predicted probabilities) from the model as a function of \7. We can see
in the plot that the indicator I4 starts to increase in prevalence at the lowest
level of the latent variable, while I9 does not start to increase until much higher
levels. At levels of the latent scale where nearly everyone reports I4 at least
several days in the last two weeks, those in the upper half of the scale, very few
people report I9. The latter is associated with much higher levels of the latent
scale than the former. This means both that it is much rarer for people to give
non-zero responses to this item than the others, but also that people who do
are very likely to have given non-zero responses to most of the other items.
We have already seen this in the raw data, the plot simply shows how this is
captured by the model.

Item 2 (I2) is the most strongly associated with the scale, it has the high-
est discrimination parameter. This is perhaps unsurprising, because it is the
item that actually uses the word depression itself: “feeling down, depressed, or
hopeless”. This is reassuring in the sense that this is the thing that the scale is
meant to measure, so it is reasonable that the item that most explicitly men-
tions it is most strongly associated with the latent factor level. Item 5 (I5) is the
least strongly associated with the scale. This is the item about whether you
have experienced “poor appetite or overeating?”. This too is perhaps not too
surprising: while issues with diet are associated with depression, they are also
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Difficulty 0|123 Difficulty 01|23 Difficulty 012|3 Discrimination
I1 0.86 1.76 2.28 1.98
I2 0.82 1.69 2.19 3.01
I3 0.43 1.50 2.05 1.64
I4 -0.07 1.26 1.87 1.91
I5 0.92 1.92 2.49 1.64
I6 1.15 1.88 2.33 2.80
I7 1.29 2.06 2.51 2.00
I8 1.70 2.44 2.91 1.90
I9 2.21 2.80 3.22 2.46

Table 12.3: Item parameters for ordinal logis-
tic item response model fit to dichotomised
NHANES PHQ-9 data.

associated with other mental and physical health problems. It is therefore not
surprising that the presence of poor appetite or overeating is less diagnostic for
depression specifically. It is still strongly associated with the latent variable that
we have estimated, just less so than the other items.

Thinking more generally, when applying these methods it is useful to look
at these sorts of extreme cases of the discrimination and difficulty parameters.
They indicate something useful about which items indicate high or low levels
on your scale (difficulty) and which items are more strongly associated with the
scale, or put differently, with the other items (discrimination). This is an ex-
ample where there is not a lot of variation in discrimination, precisely because
the survey items have been selected to all be useful indicators of depression. In
applications with data where the indicators have not already been extensively
validated, you can see much more varied discrimination parameters, with some
items barely associated with the latent factor. There are also contexts in which
there are a mix of positively and negatively associated items. Please note that
one nice thing about these models is that they “automatically” determine which
items are positively versus negatively associated with the latent variable, so it
does not matter if you code all your indicators in the same direction.

12.3.3 Applying the Ordinal Item Response Model

The analysis above used a binary item response model, collapsing all non-zero
response levels into a single category. We can now apply the ordinal response
“graded response” model to the full data. If you compare the coefficients in
Table 12.3 to those obtained earlier for the binary model in Table 12.1, you will
see that the first column of difficulty parameters from the ordinal model are
very similar to the column of difficulty parameters from the binary model. This
is because they correspond to the same response threshold: between never
having a problem and having it at least “several days” in the last two weeks. If
the proportional odds assumption of the ordinal model were perfectly accurate
in describing all levels of the response data (which it never will be, if only
because of sampling variability) these parameters would be identical. Similarly,
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the discrimination parameters are very similar across the two models, as they
are defined in analogous ways. The advantage of the ordinal item response
model over the binary item response model, just like the advantage of the
ordinal logistic regression model over the binary logistic regression model,
is simply that using more response levels yields more information and more
precise estimates given the same amount of data. If the assumptions of the
ordinal model are correct, and you have a lot of data, you will get the same
estimates from the ordinal model as you would from dichotomising at any
threshold and using the binary model.

The proportional odds assumption is visible in the fact that the three item
response curves for each item have the same shape/slope in the plots. If we
compare, as we did before, the highest (I9) and lowest (I4) difficulty items, we
see that their item response curves (which now correspond to the cumulative
probabilities of giving responses above each threshold) fail to overlap. That is,
saying that you are “feeling tired or having little energy” almost every day (the
highest response level, 3 points on the PHQ-9) is more probable at any given
level of the latent depression scale than saying that you have “thoughts that
you would be better off dead or of hurting yourself in some way” at the lowest
non-zero response level of several days in the last two weeks (1 point on the
PHQ-9). Again, this does not seem all that surprising, given the content of the
two items.

12.3.4 Comparison to PHQ-9 Points Scale

Recall that the PHQ-9 is typically scored using a 0-27 point scale, awarding
0, 1, 2 or 3 points for different responses to each item. This points scale has
been extensively validated against clinical diagnoses of depression. A recent
meta-analysis of studies comparing 0-27 points scores on the PHQ-9 to a
gold-standard of assessments from diagnostic interviews concluded that,
using a cutoff of 10 points, the instrument could achieve a sensitivity of 0.88
(95% interval: 0.83-0.92) and a specificity of 0.85 (95% interval: 0.82-0.88) (Levis
et al., 2019).2 Sensitivity, applied to this context, is the proportion of those who 2 Note that the benchmark here is a dichoto-

mous definition of depression—you have it
or you do not—while the instrument gen-
erates an interval(ish)-level scale that is then
being dichotomised. More on this point in
the remainder of this chapter as well as the
next one.

actually have depression (according to the gold standard) who are correctly
identified as having depression according to the measurement. Specificity is
the proportion of those who do not have depression (according to the gold
standard) who are correctly identified as not having depression according to
the measurement.

Figure 12.6 shows that if we compare the estimated factor scores \7 from our
ordinal item response model to the point totals from the standard diagnostic
instrument, including only respondents who gave responses to all items, we
see that there is a very strong relationship between the two. As you can see
in the plot, there are some marginal cases that are classified differently by the
item response model than the point system that is actually used in the PHQ-9
instrument, but not very many. The vertical dotted line indicates the optimal
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Figure 12.5: Item response curves for each
level of each indicator of the PHQ-9 under
a graded response ordinal IRT model with
a single latent dimension. Top plot shows
all thresholds for all indicators, bottom plot
shows only I4 and I9. Thresholds for higher
response levels use thicker lines.
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Figure 12.6: Graded response ordinal IRT
scores by PHQ-9 scores for NHANES sample,
point size proportional to number of individ-
uals with each response pattern. The vertical
line shows the PHQ-9 cutoff suggested by
a recent meta-analysis of validation studies
versus diagnostic interviews; the horizon-
tal line is the threshold in the factor score
with the same proportion of observations
classified as high on the scale.

PHQ-9 cutoff from the meta-analysis mentioned earlier. According to this
cutoff, 8 of NHANES respondents are classified as having responses indicative
of depression. The horizontal dotted line on the plot shows the latent variable
estimate that yields the same classification proportion. Only 92 of the 5134
complete observations in this data set are classified differently by the point
system that is actually used and the latent variable estimated from the ordinal
item response model.

This is an example where a relatively simple measurement strategy involv-
ing a scoring rule for allocating points to different responses and adding them
up comes close to the same conclusions as a measurement model. The reason
for this, as was the case for the previous examples where we have seen this,
is that researchers developed the scale to be well-behaved in this way. All the
indicators have been validated to make sure that they are similarly responsive
to the concept of interest and more weakly related indicators have been dis-
carded. The item response models are a way to evaluate the extent to which
the indicators seem to reflect a common underlying concept of interest, and
therefore to validate the point system. The point system has the obvious advan-
tage that it can be quickly applied in practice, without the need to fit a larger
model on a broader set of data. Nonetheless, if you are trying to develop a new
measurement strategy, tools like item response models are valuable in that
process.
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12.4 Conclusion

Item response models are used to design and validate standardised education
tests. Most tests that students take are not marked this way. No one fits a
model, they just count up how many questions or items you got right. But
some items may be more or less indicative of underlying understanding/ability.
For example, imagine there is a weird question in the middle of your test
that has nothing to do with the material of the course. One might expect that
performance on that item would be weakly related to the other items. That
might be a reason not to include that item on future tests. So these kinds of
models are potentially useful in test development, even if they are rarely used
to score tests directly.

Item response models are widely used in political science in order to model
how different kinds of political responses reflect underlying political prefer-
ence dimensions. Common applications include votes in legislatures (Clin-
ton et al., 2004), decisions by judges (Martin and Quinn, 2002), and survey
responses of citizens (Bafumi and Herron, 2010), to name just a few. These
methods work well in some contexts, but less so in others. House of Com-
mons voting in the UK is poorly approximated by these models because of very
strong party discipline (Spirling and McLean, 2007).

Conceptually, the sources of measurement error in item response models
are the same as the sources of error in factor analysis that we considered in
the previous chapter. And once again, it is critical to remember that these
are “unsupervised” measurement methods. Item response models discover
whatever latent factors explain the most variation in your indicators. They do
not necessarily measure what you want them to measure. As with principal
components and factor analysis, indicator selection is crucial to ensuring that
these methods measure what you want them to measure.



13
Unsupervised Class Measurement with Interval-Level In-
dicators

In Chapter 11, we considered principle components analysis and factor analysis,
methods for generating continuous/interval-level measures from continuous/interval-
level indicators. In Chapter 12, we considered item response models, which
were methods for generating continuous/interval-level measures from cat-
egorical/nominal/ordinal indicators. In this chapter and the next, we fill in
the two corresponding cases for measuring categorical/nominal/ordinal
measures from continuous/interval-level indicators and also from categori-
cal/nominal/ordinal indicators.

Continuous
Indicators

Categorical
Indicators

Continuous Measure Chapter 11 Chapter 12
Categorical Measure Chapter 13 Chapter 14

Just as principle components analysis is an algorithm that aims to efficiently
describe variation in a set of indicators in terms of a set of continuous scale
components; there are methods that aim to efficiently describe variation in the
set of indicators in terms of membership in groups/clusters/classes. Just as fac-
tor analysis and item response models are methods that model how indicator
data could have arisen from latent continuous variables, there are methods that
describe how indicator data could have arisen from latent categorical variables.
I will divide up the discussion in this chapter into clustering methods (that
aim to minimise within-class variation and maximise across-class variation or
similar criteria) and model-based methods (that aim to describe how indicators
could have been generated from underlying classes). Note that, as was the case
with measuring scales, these will sometimes yield similar classifications, even
though they are conceptually different ways of approaching the problem.
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Measurement Models
Continuous
Indicators

Categorical
Indicators

Continuous Latent
Variable

Factor Analysis Models Item Response Models

Categorical Latent
Variable

Gaussian Mixture
Models

Latent Class Models

It is unfortunate that the standard names for these models are not more
logically organised, but these are the conventional names that you will come
across. These are all examples of models which describe how latent variables
with different levels of measurement are related to indicator variables with dif-
ferent levels of measurement. All of these models can be subsumed in a general
framework of Generalized Linear Latent and Mixed Models (GLLAMMs) as
described by Skrondal and Rabe-Hesketh (2004).1 1 Models for mixed types are also straight-

forward to describe in this framework. You
can have a model which generates both
continuous and categorical indicators from
scales. You can have a model which generates
both continuous and categorical indicators
from classes. You can also have mixed types
of latent variables, for example one binary
and one continuous latent variable. This final
version is rarely done, because issues sur-
rounding identification of the latent scale and
class are challenging to deal with in many
applications, but it is a logical possibility.

13.1 Clustering Algorithms

There are an enormous number of clustering algorithms that have been devel-
oped, using a variety of criteria to assign units to clusters. We will consider two
of the more commonly applied algorithms here, and then discuss more general
conceptual issues with all such algorithms.

13.1.1 K-means clustering

One commonly used method for clustering is “k-means” clustering. The core
logic of k-means clustering is that we want to partition the set of observations
into 9 groups in the way that minimises the within-group sum of squared
distances from the within-group mean. The number of groups 9 is chosen
by the researcher. Let’s say we have > observed indicators �7 8 ( 8 = 1, 2, . . . , >)
measured for each unit 7 in a sample of data. We are trying to assign �7 ∈
1, . . . , 9 such that the following is minimised:

<∑
7=1

>∑
8=1

(
�7 8 − � 8� (7)

)2
where � 8� (7) is the average value of variable 8 for the units 7 assigned to the

same group �(7) as unit 7. The algorithmic details of actually finding (or trying
to find) the optimal allocation of the units into groups are beyond our scope
here. It is impossible to guarantee that one has found the optimal allocation for
even moderate sized data sets, but a great deal of research effort has gone into
finding reasonably reliable search algorithms (Steinley and Brusco, 2008).

Like Principle Components Analysis, k-means treats variation in all vari-
ables as equally important to “explain”, and so is sensitive to the scale on which
the variables are defined. As a consequence, unless those variables are on com-
parable scales already, it is common to standardise them so that the algorithm

https://en.wikipedia.org/wiki/Cluster_analysis
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“tries” equally hard to explain variation on all variables. As noted when we
discussed PCA and previously, this kind of equal weighting assumption may
or may not be suitable to a given problem, but among many possible arbitrary
choices, it is often the one people choose.

As a simple toy example to illustrate how k-means clustering works, con-
sider the a data set with a single indicator 8 = 1, and five units with F equal
to -15, -15, 5, 20 and 40. If we apply k-means with 9 = 2, it turns out that the
two clusters that minimise the within-group sum of squared distances put -15,
-15 and 5 in one cluster (mean -8.33, sum of squares 266.66) and 20 and 40 in
the other cluster (mean 30, sum of squares 200). The total sum of squares is
therefore 266.66 + 200 = 466.66.

It is perhaps slightly counter-intuitive that this is the best 9 = 2 clustering,
because 5 is closer to 20 than it is to -15, but if you put 5 in the other cluster
the sum of squares would increase, as the cluster -15, -15 has sum of squares 0
while the cluster 5, 20, 40 has a higher sum of squares (616.66). This toy example
illustrates a key feature of k-means clustering: it will generally prefer to create
clusters of about the “same size”, as this tends to reduce squared error versus
having a relatively spread out cluster and a relatively compact cluster.

13.1.2 Heirarchical clustering

Another commonly used strategy for algorithmic clustering is hierarchical
clustering which creates a full series of clusterings from 9 = 2 to 9 = <, for
a data set with < observations. Agglomerative hierarchical clustering does this
by starting with the 9 = < “clustering” where every observation is its own
clustering, and then combining the two clusters that are “closest together” into
a new cluster. Since each step reduces the number of clusters by 1, it yields a
full array of possible clusterings. There are different possible ways to specify
distances between clusters, and thus which clusters should be combined at
each step. Each of these will yield different hierarchies of clusterings. The most
common way is using Euclidean distances between the mean value of the units
in each cluster. There are also divisivemethods that start with all units in one
cluster and sub-divide repeatedly.

Using the same toy example that we considered for k-means clustering,
-15, -15, 5, 20 and 40, we can easily work out how agglomerative hierarchical
clustering proceeds. The first pair of units that are combined into a cluster
are the two with identical values of -15 and -15, as they have distance 0 and
are therefore closer together than any other pair of units. This leaves clusters
centered at -15 (-15, -15), 5, 20 and 40. The closest of these are 5 and 20, so these
are then combined into a cluster, leaving clusters centered at -15 (-15, -15), 12.5
(5, 20), and 40. The closest of these are -15 (-15, -15) and 12.5 (5, 20), so these are
then combined into a cluster, leaving clusters centered at -1.25 (-15, -15, 5, 20) and
40. Thus, the agglomerative hierarchical clustering yields a different 2 cluster
solution than the k-means clustering, with all but one unit in one cluster and a
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single unit in the other.
The results of this approach can look rather different from k-means, as

we see both in the toy example and in the application later in the chapter.
Agglomerative clustering does not have the tendency of k-means to produce
similarly sized, spherical clusters, because nothing in the procedure pushes it
in that direction. It simply aims, at each step, to join clusters that are as close to
one another as possible (by various metrics). This can lead to very differently
sized clusters as the process approaches a single cluster of all the data.

13.1.3 Alternative clustering algorithms

There are many, many alternative clustering techniques. There are a wide
variety of criteria for similarity and difference that can and have been used
with these, as well as other clustering algorithms not discussed here. Grimmer
and King (2011) develop a set of tools for exploring and comparing a very large
number of possible clusterings defined by different algorithms, with an eye
towards identifying those clusterings that are “insightful” or “useful” for a given
application. Another way to state this is that the aim is to look for clusterings
that measure something of interest to the analyst.

13.2 Gaussian Mixture Models for Continuous Indicators

What factor analysis is to principle components analysis, Gaussian mixture
models are to the K-means clustering method that we introduced earlier in this
chapter. Factor analysis is a model-based method for inferring latent factors
that are linearly related to observable indicator variables, whereas principle
components analysis is an algorithmic decomposition of variance into linear
functions of the observable indicator variables. Gaussian mixture models are
a model-based method for inferring latent classes that generate multivariate
normal clusters of observations, whereas K-means is an algorithmic decom-
position of a data set into classes that minimise within-class variance. More
generally, one can define gaussian (or, more atypically, non-gaussian) mixture
models with different distributions: the key feature that connects them to mea-
surement of a categorical latent variable is that the observed data are a mixture
of data from different classes, each of which has a distinctive distribution. The
unsupervised measurement task is to infer both these distinctive distributions
that characterise each class and which observations belong in each class, from
the observable data.

By analogy to the factor analysis and the item response models we have
looked at previously, we use \7 to correspond to the latent variable describing
each unit 7, only now this is a categorical variable with \7 = 9 for 9 ∈ 1, 2, . . . , ?.
As before, 7 indexes units; 8 indexes indicators, of which there are > in total;
and 9 indexes the latent clusters/classes, of which there are ? in total.

The core assumption of the Gaussian mixture model is that the indicators
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are normally distributed around mean values that are characteristic of different
levels of the categorical latent variable \7, which is to say different clusters. The
clusters are sometimes specified to have independent normal distributions for
each indicator:

�7 8 ∼ #
(
`\7 , f

2
\7

)
It is typical to allow the f 2

\7
to vary across clusters, which means that (unlike k-

means) the clusters can be “wider” with respect to some indicators than others.
Where possible, these models assume multivariate normal distributions across
indicators:

�7 ∼ "+#
(
`\7 , Σ\7

)
This is a more general specification that includes independent normal dis-
tributions as a special case, but requires more data to estimate reliably. The
multivariate normal version allows for indicators to have correlated values for
a given cluster, which means that the clusters can take on any ellipsoid shape
rather than only spheroid shapes around the cluster mean.
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Figure 13.1: Data with two indicator variables.

Figure 13.1 is an example of the kind of data for which one might wish to use
a Gaussian mixture model. There are two indicators �1 and �2, and the figure
suggests that it might usefully be described in terms of clusters. However,
the clusters do not appear to be spherical, so k-means clustering may not be
suitable. Figure 13.2 shows the results of estimating a Gaussian mixture model
with multivariate normal indicator distributions for three classes. We see that
within each class, the two indicators are estimated to be positively correlated,
and the data seem to be generally consistent with the three class model.
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Figure 13.2: Gaussian mixture model fit with
three clusters/classes. Ovals indicate the
standard deviations and correlation of the
indicators for each class.

In fact, these data describe two physical measurements (bill length and bill
depth) on a sample of penguins from three different species (Horst et al., 2020).2

2 The idea for this example came from a tweet
by Oli Hawkins

Figure 13.3 uses the species labels to colour the points, and the match to Figure 2
is extremely close with 97% of penguins correctly classified. Recall that we have
used an unsupervisedmethod here, we did not give the Gaussian mixture model
any information about species.

If one actually had the aim of measuring penguin species on the basis of
their bill length and bill depth, one might want to use one of the supervised
methods discussed in the previous chapter. The unsupervised method works
unusually well here because the Gaussian mixture model describes a generative
process that closely approximates the true distribution of the data, which really
is a mixture of three types/classes (species), each of which is approximately
multivariate normal in these two indicators. Distributions of physical charac-
teristics of animals are often very well approximated by multivariate normal
distributions, and so this simple example is really a best case for a Gaussian
mixture model yielding accurate measurements of a meaningful latent class.
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Figure 13.3: Species of penguin.

https://twitter.com/olihawkins/status/1285664698201972736
https://twitter.com/olihawkins/status/1285664698201972736
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13.3 Application - Clustering Political Attitudes

13.3.1 K-means

To look at an example of k-means clustering, we will once again use the ide-
ology questions asked in the 2017 BES, the same data set we used for our dis-
cussion of principle components analysis (PCA) in Chapter 11. This is an inten-
tional choice. PCA aimed to summarize the variation in these data in terms of
continuous summary measures (scales); clustering aims to summarize the vari-
ation in these data in terms of categorical summary measures (classes). They
are both trying to achieve the same thing, and both have the same objective
function of minimising squared errors / unexplained variance. They differ in
that PCA provides one or more “scales” as a summary and clustering provides
two or more “classes” as a summary.

As with PCA, the fact that the objective function is minimising squared
errors across all indicators means that it typically makes more sense to use
k-means on standardised indicators, or on variables that already have the same
dimensions/scales. As you will recall from the discussion in Chapter 11, the BES
ideology questions are arguably already on comparable scales, and so we will
not standardise them.

First, we will compare the estimates with the PCA estimates on the same
data to see how the two approaches describe the response patterns in the data
in different ways. In Figure 13.4, I compare k-means with 2, 3, and 4 clusters to
the first two principle components. As you can see, the k-means with 9 = 2
divides the respondents into high and low values on the first principle com-
ponent. The first principle component is the continuous scale which most
efficiently explains variation in the responses to this battery of questions,
which means it is the scale that minimises residual variance. The k-means
clustering with 9 = 2 divides the units into two groups that minimise within
group variation, which is to say, residual variance. The k-means clustering with
9 = 2 will generally divide the data into “high” and “low” values on the first
principle component: these are simply two different ways of describing the
same variation in the data.
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Figure 13.4: K-means cluster assignment as a
function of principle components.

When we move to 9 = 3, we begin to see an important feature of k-means
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clustering, which is that it tends to create clusters that are “spherical”. Because
within-group variation is with respect to the mean, the most efficient way
to minimise that variation is to describe the data in terms of groups that are
shaped like circles/spheres/hyper-spheres in terms of the underlying variables
(and as a consequence, also the principle components, which are linear com-
binations of those variables). At 9 = 3, the three clusters correspond to three
disjoint groupings in the first two principle components. Once we move to
9 = 4, the first two principle components are no longer sufficient to describe
the variation in the four groups that the clustering algorithm identifies. This
does not mean that either is wrong, it just illustrates that efficient explanation
of variation begins to look increasingly different when done in terms of scales
versus classes as the number of scales/classes increases. The 9 = 2 clustering
will generally divide the data in the middle of the first principle component,
but after that the relationships becomes more complicated.
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Figure 13.5: Agglomerative hierarchical
cluster assignment as a function of principle
components.

As we saw in the toy example earlier, agglomerative hierarchical clustering
does not necessarily create equal size groups. Figure 13.5 shows that the clusters
generated for these data also do not cleanly separate units based on their prin-
ciple components. K-means is a clustering algorithm that is a particularly close
analogue to principle components analysis, but other clustering algorithms can
yield very different results.

13.3.2 Validation

You might now be wondering, which of these (or the many other) clustering
algorithms should you use? There is no right way to do algorithmic clustering.
There are many different clusterings, each as valid for a given application
as the procedure that generated it is as an approximation of the researcher’s
goals in doing the clustering (Grimmer and King, 2011). From the perspective
of measurement, these procedures each define their own target concept, all
categorical in conceptualisation, but slightly different in terms of how they
define what it means to be a category. None of them can be reliably expected to
recover “the true” clusters in general, if such a thing were to even exist. These
are pragmatic measurement at its most pragmatic, where it runs up against such
tasks as exploratory data analysis, description and visualisation. Whether a given
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clustering is useful for a given purpose will depend on that purpose.
One purpose we might have, with this example, is identifying “ideological

groups” of voters and relating their views to political choices. Just as we ex-
amined the relationship between the components from PCA and vote choice,
we can examine the relationships between the classes recovered from these
clustering procedures with vote choice.

Leave Remain Con Lab LD SNPPCGreen UKIP

Cluster 1 65 35 48 39 4 6 3
Cluster 2 30 70 31 50 11 7 1

With two clusters, K-means separates voting groups partially. Increasing the
number of clusters does seem to identify meaningfully different groups. With
three clusters, we start to distinguish between Conservative-leaning Leave
voters (cluster 1) and Labour-leaning Leave voters (cluster 2).

Leave Remain Con Lab LD SNPPCGreen UKIP

Cluster 1 56 44 68 20 5 5 2
Cluster 2 67 33 35 50 5 6 4
Cluster 3 22 78 21 59 12 7 1

And with four, we have groups roughly corresponding to all four combi-
nations of Leave and Remain, Conservative and Labour, with supporters of
Liberal Democrats, SNP, PC and Greens tending to end up in the cluster with
Labour Remainers.

Leave Remain Con Lab LD SNPPCGreen UKIP

Cluster 1 66 34 38 48 4 6 4
Cluster 2 23 77 14 65 12 8 0
Cluster 3 65 35 53 33 4 6 4
Cluster 4 44 56 63 25 7 4 1

As with when we completed similar validation for PCA on these data, none
of the relationships are very strong. This reflects the fact that few citizens
hold ideologically consistent views across many issues. Nonetheless, we see
substantial differences in voting between the different classes, which broadly
reflect the relationships that we would expect to see.

13.4 Application - Constituency Politics in the UK

K-means clustering tends to generate circular/spherical clusters in the indica-
tor dimensions, because it weights variance in all indicator variables equally. In
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constrast, the fact that a multivariate normal can have correlation across indi-
cator dimensions means that under a Gaussian mixture model classes can have
either spherical or ellipsoidal distributions of indicator values. To illustrate this
useful feature of Gaussian mixture models, I will use a new example. We are
going to try to cluster UK parliamentary constituencies into different classes
based on five continuous variables: support for Leave in the 2016 referendum
on membership in the European Union and support for the Conservative,
Labour, Liberal Democratic and Scottish National parties in the 2017 UK gen-
eral election. The idea is that we might be interested in describing different
‘political types’ of constituencies.
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Figure 13.6: Gaussian mixture model assign-
ment to three classes, as a function of pairs of
five constituency vote variables.

In order to keep the number of figures manageable, we will focus on 3, 4
and 5 class Gaussian mixture models. Figure 13.6 illustrates how the 632 con-
stituencies in England, Scotland and Wales are assigned to three classes as a
function of pairs of the indicator variables.3 Working out what this tells us re- 3 I use default settings in the R package

mclust (Scrucca et al., 2016).quires examining several of the pairs plots in that figure. If you look at the plots
for Con17 by Lab17, you will see one class (red squares) that is tightly clustered
along the diagonal. Given that the vote shares for the two parties cannot exceed
100%, this illustrates that this class consists of “Lab-Con constituencies”, those
in which none of the minor parties received a significant share of the vote in
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the 2017 election. If you examine the plots where LD17 is one of the plotted
variables, you will see that the blue circles are constituencies where the Lib-
eral Democrats received a non-trivial share of the total vote. Finally, the green
triangles are all seats where the Scottish national party receives a substantial
share of the vote, which is to say all the seats in Scotland and none of the seats
elsewhere. The three classes are thus Lab-Con seats, English and Welsh seats
where the Lib Dems get a non-trivial vote, and Scottish seats.
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Figure 13.7: Gaussian mixture model assign-
ment to four classes, as a function of pairs of
five constituency vote variables.

This typology is reasonable, if you know anything about UK political com-
petition, but is perhaps too parsimonious. If we move to a four class model,
plotted in Figure 13.7, and look at the plots in a similar way, we see that the
four classes correspond to a Lab-Con class, a Scottish class, but that there are
now two classes with non-trivial Lib Dem vote, one where the Conservatives
have high vote shares (blue dots) and one where Labour has high vote shares
(green dots). So now the four classes are Lab-Con seats, Lab-LD seats, Con-LD
seats, and Scottish seats. Talking about Lab-Con, Lab-LD and Con-LD seats as
separate classes is a traditional way of talking about constituency politics in the
UK.

It is important to recognise that nothing magical is happening in this unsu-
pervisedmodel, it is simply trying to describe the the major patterns in the vote



pragmatic social measurement 249

share data as efficiently as possible. It is notable that the model does not really
get very “distracted” by the inclusion of the EU referendum vote share data.
The classes have different average leave shares, but they overlap in distribution
very substantially.
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Figure 13.8: Gaussian mixture model assign-
ment to five classes, as a function of pairs of
five constituency vote variables.

Figure 13.7, illustrating a five class model, does not lead to additional clarity
in this case. The classes start to be subdivided in ways that are more difficult
to make sense of. You might reasonably ask, when should we stop? How many
classes should we use? Here, we return to a question that first arose when we
introduced unsupervisedmeasurement methods with principle components
analysis. How much of the variation explained is enough? The screeplots we
used to visualise variation explained for principle components have analogues
for gaussian mixture models. Figure 13.9 shows a similar kind of plot using the
BIC fit statistic, for models with 1 to 8 classes, and a variety of different restric-
tions on variances and covariances of the multivariate normal distributions
used to describe each class.

Figure 13.9 shows five different kinds of restrictions on the multivariate
normal distributions that clusters are assumed to follow, some of which fit
better than others (better fit is higher on the plot). The most restricted models
assume that the variances of all indicators are equal, all clusters have the same
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Figure 13.9: BIC fit statistic for Gaussian
mixture models of 1 to 8 classes and different
restrictions on the multivariate normal
distributions of indicators.

variances, and that all indicators are independent (EII). This model closely
resembles the underlying logic of k-means, assuming that clusters describe
spheres in the space of indicators. Next, we have models where the variances
of all indicators are equal, different clusters have different variances, and all
indicators are independent (VII). This is the same model as before, but some
clusters are allowed to have larger/smaller spheres of indicator values around
them. The next model instead allows the variances of different indicators to be
different, but all clusters once again have the same shape and size distribution
of indicator values around their means (EEI).

The fourth set of models are those where indicators are allowed to be corre-
lated, but all all in the same way and with the same variances (EEE). This allows
clusters to have ellipsoid shaped clouds of indicator values associated with
them, but the ellipses are all the same shape, orientation and size. Finally, the
fifth set of models are those where the different ellipses have the same shape
and size, but are allowed to have different orientations. There are many more
variations that one can consider, although far more data is required to estimate
models that allow all the clusters to have different shapes, sizes and relative
variation in indicators.

One thing that is apparent from Figure 13.9 is that the more flexible models
fit much better than the ones with stronger constraints. Unfortunately model
fit does not give us a very good way of assessing which of the models will be
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most useful here. Models with more components/clusters tend to fit better far
beyond the level at which they give us much insight into the data (we already
were struggling to interpret 5 clusters above). We have seen this already (more
principle components / factors is not necessarily better for interpretation)
and will see this limitation of model fit as a tool for selecting an unsupervised
measurement model acutely in the next chapter as well.





14
Unsupervised Class Measurement with Categorical Indi-
cators

In this chapter, we fill in the final cell of the table I provided in the last chapter:
models for measuring categorical quantities using categorical data.

Continuous
Indicators

Categorical
Indicators

Continuous Measure Chapter 11 Chapter 12
Categorical Measure Chapter 13 Chapter 14

My focus in this chapter will be on Latent Class Models / Latent Class
Analysis as a method, as this is the most widely applied method of this type.
There are methods like community detection algorithms for social network
data which could be understood as falling into this category, but analysis of
social network data is outside the scope of this book. Here, we are thinking
about cases where we have collected categorical data, which are not interval
level, on a number of units. We want to measure something about those units,
using these data, in an unsupervised way.

14.1 Latent Class Models for Categorical Indicators

Measurement Models
Continuous
Indicators

Categorical
Indicators

Continuous Latent
Variable

Factor Analysis Models Item Response Models

Categorical Latent
Variable

Gaussian Mixture
Models

Latent Class Models

Latent class models fill in the fourth quadrant of the model-based, unsuper-
vised measurement models grid shown earlier: categorical indicators related to

https://en.wikipedia.org/wiki/Community_structure
https://en.wikipedia.org/wiki/Community_structure
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a categorical latent variable. The core idea of latent class models is that there
are different latent clusters/classes, and the probability of a unit 7 having any
given indicator value �7 8 = : depends on the latent cluster/class \7 = 9 of which
unit 7 is a member. Here, because the indicators are categorical rather than
continuous, we need the additional index : to indicate the outcome level on
indicator 8.

The latent class model is based on the assumption that the probability that
an individual 7 in class 9 has a set of indicator values �7 on indicator 8 is:

>
(
�7 8 = :

)
= c 8\7 :

This expression looks incredibly simple, but much is buried in the indices
of the parameters c . The idea is that there are distinctive probabilities c for
different levels : of each indicator 8 that depend on which cluster \7 = 9 the
unit is a member of.

A simple example is helpful for getting an idea of how these models work.
Imagine that you observe data on three votes taken in a legislature with 100
legislators, which for our purposes we will think of as three indicators �1, �2
and �3. You observe the following pattern of votes:

Count �1 �2 �3

5 Y Y Y
5 Y Y N
40 Y N Y
0 N Y Y
0 N N Y
40 N Y N
10 Y N N
0 N N N

So, 40 legislators vote yes (Y) on votes 1 and 3, but no (N) on vote 2 (YNY),
40 legislators vote NYN across the three votes, and the remaining legislators
exhibit some of the possible combinations of yes and no votes, in various
numbers. Overall �1 has 60 yes votes, �2 has 50 yes votes, and �3 has 45 yes votes,
each out of 100 total.

A latent class model with two classes assumes that these data arise from
two classes, each with distinctive probabilities of voting on each indicator � .
In this instance, if we estimate a latent class model, we estimate classes with
the following voting probabilities. The probability of class 1 voting yes on �1 is
0.09, on �2 is 1.00, and on �3 is 0.00. This class almost all opposed �1, all voted
for �2 and all voted against �3. The probability of class 2 voting yes on �1 is
1.00, on �2 is 0.11, and on �3 is 0.80. This class all supported �1, mostly opposed
�2, and mostly supported �3. This kind of pattern of voting might plausibly
reflect opposition (class 1) versus government (class 2) voting patterns, if for
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example votes 1 and 3 were government proposals and vote 2 was an opposition
amendment.

Count �1 �2 �3 p(Class 1) p(Class 2) Class

5 Y Y Y 0 1 2
5 Y Y N 0.75 0.25 1
40 Y N Y 0 1 2
40 N Y N 1 0 1
10 Y N N 0 1 2

The table above shows the vote patterns that appear in the data alongside
the latent class model estimates of which class they belong to. In this simple
example, most of the units are decisively (with probability one) assigned to a
particular class, however this is less likely to occur in examples with more indi-
cators and more varied patterns of observed indicator values. The two groups
of 40, the YNYs and the NYNs are assigned to different classes with probability
1, as implied by the discussion above. The group of 10 YNNs are assigned to
class 2 with probability 1, because class 1 voted for �2 with probability 1, and
so these 10 legislators cannot be part of class 1. Similarly, the group of 5 YYYs
cannot be in class 1 because they voted in favour of �3, while class 1 voted for
�3 with probability 0. The only group whose assignment is probabilistic in this
toy example is the 5 YYNs, who are more likely to be members of class 1 than
class 2 given their pattern of voting / indicator values, but could be a member
of either class.

Again, in an example with a larger set of indicators and more varied pat-
terns of indicator values, we would not see such decisive assignments of units
to classes as we do in this example. In general, latent class analysis finds clus-
ters of units with similar patterns of indicator values, for categorical indicators.
It yields probabilistic predictions for the membership of particular units in
each class as well as a description of the distributions of indicator values for
units in each class. Like Gaussian mixture models, it is a generative model for
how the indicator values arise from class membership. Like all the methods
in this chapter, it is unsupervised, the classes that emerge are those that best
predict variation in the indicator values. This may prove to be a useful classifi-
cation of the units for your measurement purposes, but it also may not.

14.2 Application - Predicting Clinical Diagnosis of Depression, Part 3

We can use a latent class model to revisit the example of the PHQ-9 depression
instrument. Recall that an important goal of the PHQ-9 instrument was to
aid in classification of individuals who qualify as clinically depressed. We
might hope that Latent Class Analysis, with two latent classes, could help us
do something like this. If we estimate a two class latent class model1 using the 1 I use default settings in the R package

poLCA (Linzer and Lewis, 2011).same data that we previously examined, we do generate a classification that has
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roughly the right properties.

Table 14.5: Estimated probability of each level for each indicator for each
class, based on a two class latent class model for PHQ-9 indicator data.

Indicator Class Pr.1. Pr.2. Pr.3. Pr.4.

I1 1 0.31 0.42 0.14 0.13
I1 2 0.90 0.07 0.02 0.01
I2 1 0.27 0.49 0.13 0.11
I2 2 0.94 0.05 0.01 0.00
I3 1 0.24 0.35 0.17 0.24
I3 2 0.76 0.19 0.03 0.02
I4 1 0.09 0.44 0.21 0.26
I4 2 0.62 0.32 0.04 0.02
I5 1 0.39 0.34 0.13 0.15
I5 2 0.87 0.11 0.02 0.01
I6 1 0.47 0.33 0.10 0.10
I6 2 0.97 0.03 0.00 0.00
I7 1 0.53 0.27 0.09 0.11
I7 2 0.95 0.04 0.00 0.00
I8 1 0.67 0.20 0.06 0.06
I8 2 0.98 0.02 0.00 0.00
I9 1 0.87 0.09 0.02 0.02
I9 2 1.00 0.00 0.00 0.00

When you estimate this model, it yields probabilities for each response
level on each indicator, given membership in each class. Table 14.5 shows the
probabilities for all four response levels, for each indicator, for each latent
class. When we examine these, we discover that “class 1” almost always gives
the lowest response option (“never”) on every item, while “class 2” gives higher
response options with much higher probability. In essence, individuals put in
class 1 are those with very few symptoms of depression, while individuals with
more than a very few symptoms are all classified into class 2.

Another way to see what the model is doing, is to look at the predicted
classification for each individual, and compare these to their PHQ-9 scores (on
the standard 0-27 scale). Figure 14.1 shows that the two classes are very well
separated in terms of the PHQ-9 scores that they represent, with a threshold in
the 4-6 point range. The fact that we find this close relationship reflects facts
about these data that we already discussed in Chapter 12 when we used them to
illustrate item response models. All of the indicators are positively associated
with one another: an item response model describes that as reflecting positions
towards one end of a latent dimension as opposed to the other while a latent
class model describes that as reflecting membership in one class rather than
another.
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Figure 14.1: Proportion of individuals in
class with more depressive symptoms, as a
function of PHQ-9 score.
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As noted in Chapter 12 when this data set was introduced, the best meta-
analyses of PHQ-9 scores’ relationship to clinical diagnosis of depression puts
the threshold at 9. The threshold that the latent class model “finds” is substan-
tially lower than the threshold validated to best predict clinical diagnosis (a
score of 9). This is because the latent class model has no information about
clinical diagnosis: it is an unsupervised rather than a supervised measurement
strategy. Latent class models are simply trying to explain variation in the in-
dicators. Based on the model that there are two groups in the data set, each
with a different set of probabilities for each level of each indicator, the model
tries to predict as much variation as possible with the most efficient set of clas-
sifications. This yields a somewhat higher number of people classified to the
“depressive” class than would be medically diagnosed as such.

14.3 Application - Patterns of Survey Responses Regarding Taxation

Latent class analysis is most useful for summarising response patterns in cat-
egorical response data which have a more complex structure than that in the
preceding example. In particular, this is useful in survey data where there are
partially ordinal response scales, such as in cases where there is a “Don’t Know”
or similar option in addition to a response scale running from “Strongly Agree”
to “Strongly Disagree” or similar.

One such application is presented by Lucy Barnes in a paper entitled “Tax-
ing the rich: public preferences and public understanding” (Barnes, 2021) Figure
14.2 shows the main results of a seven class latent class analysis of six survey
questions with six response categories each. The questions assess the extent
to which UK respondents endorse zero-sum and positive-sum expressions of
ideas around conflict for resources, the purpose of economics, and the labour
market. This creates six survey questions, in pairs that are in some logical con-
flict with one another (zero sum versus positive sum). As with many survey
batteries, the that that there are items where we might expect someone with
consistent views to give “agree” responses as well as “disagree” responses is an
intentional design choice.

• Zero sum: conflict - “If someone gets richer, somebody else gets poorer”
• Zero sum: purpose - “For every new person that starts working, there is one
less job for the existing workforce”

• Zero sum: labour market - “Economics and economic policy are about
distributing existing resources”

• Positive sum: conflict - “If someone gets richer, it means that total wealth
increases”

• Positive sum: purpose - “New workers increase demand for goods and
services and so create jobs for others”

• Positive sum: labour market - “Economics and economic policy are about
increasing the resources available”
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Figure 14.2: Latent Class Analysis of six
survey responses on indicators of zero-sum
and positive-sum thinking about economics.
Figure from Barnes 2021.
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Barnes identifies four latent classes corresponding to responders who can
be characterised in terms of the substance of the research question that moti-
vated the survey. These are “a: weak positive sum”, “b: left neoliberals”, “c: class
conflict”, and “f: strong positive sum”. We will return to these below, but before
we do, it is important to note that there are also three latent classes that are
more about how people respond to the the survey than about what they believe
about economics: “d: acquiescers”, “f: non-committal”, “g: high don’t knows”.
The acquiescers (10.0%) tend to strongly agree or agree with all the six survey
items, even though this is inconsistent with respect to the economic principles
being queried. The non-committal respondents (8.7%) give the middle response
on nearly all items. The high don’t knows (6%) give the don’t know response
to nearly all items. These are distinct response patterns, but it isn’t clear they
really correspond to substantive views about the economic questions that are
the target of the study. Rather, they may reflect three distinct ways that people
who are not that interested in the survey quickly answer a series of questions
they don’t care about: agree to everything, give the intermediate response to
everything, or say you don’t know to everything. Collectively, these patterns
characterise about 1/4 of the respondents to the survey.

The other four classes are the ones that speak to the research question
about economic attitudes. These four classes are not unordered in the way the
three “response types” do, they logically run from those who are more inclined
towards zero sum understandings and away from positive sum understandings
towards those who take the opposite views. That is, from “c: class conflict”
(15.8%) on one end through “b: left neoliberals” (23.9%) and “a: weak positive
sum” (28.6%) to “f: strong positive sum” (6.9%). If you carefully examine the
response patterns for these groups in the figure, you will see that the typical
responses shift across the response options in a consistent direction as you
move across the four classes in the order that I have listed them.

14.4 When Should We Measure Categorical Quantities as Opposed to
Continuous Quantities?

The fact that these four classes are ordered means that if we were instead to
fit an item response model to the data for these respondents, we would esti-
mate a continuous scale measure that would tend to array these four groups
in this order. Whether we describe this variation using a latent scale or latent
classes is up to us as analysts, we cannot assess which model is better on the
basis of model fit. The question is what is a more useful way of summarising
the patterns of response. However, what the latent scale model would typi-
cally struggle to do is to provide such an easily interpretable presentation of
the three response classes that do not tidily fit into the dimension that charac-
terises the other four, and their presence might muddy some analyses that seek
to understand where different demographic and political groups fall on these
questions.
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This example highlights that there are some situations where it is not clear
whether we should seek to measure a continuous quantity or a categorical
quantity. In this application of a categorical model, latent class analysis, we see
evidence of a continuum from the political left to the political right. The latent
class model has no way to describe this other than by setting out a sequence of
(in this case four) types from left to right, with response distributions shifting
monotonically on each response question as you move across the types. In
some sense, this is simply a poor approximation of an IRT model. In this appli-
cation, the presence of other response types that are “off” this dimension makes
the latent class approach relative attractive compared to a model with a contin-
uous latent variable, but sometimes the application of latent class analysis will
yield types that all seem to be embedded in a simple one or two dimensional
continuous space. In such cases, should one switch from latent class analysis to
an item response model with continuous latent variables?

Assume here that we are working in a situation where there is not an en-
tirely clear answer based on theoretical grounds. Ideally the answer should
be dictated by the conceptualisation of the quantity you want to measure, but
sometimes one could just as easily describe a continuum or a set of types.

In the above example, patterns in the response variables do help. For exam-
ple, if you really want to think of everyone as having a position on a left-right
ideological scale, but you discover that some people say they do not know to
everything and others just give the middle response to everything, and other
always give the first response option even though sometimes that is the most
left-wing view and sometimes that is the most right-wing view, you may con-
clude that this is not a useful conceptualisation for describing variation in the
sample you are working with. Not everyone seems to have a position on a left-
right scales that is driving their responses: this is true for many respondents,
but not for all respondents.2 2 Often, the groups whose responses seem

to be driven by other considerations (eg
indifference to the survey) will end up being
placed in the middle of the scale, as they are
clearly not consistently left-wing or right-
wing. This is usually a reasonable placement,
within the logic of a continuous measure, but
you then need to be very careful to recognise
that the centre of your scale jumbles up a
variety of types of “moderates”.



15
Unsupervised Mixture Measurement

To be written. . .
This chapter will introduce Latent Dirichlet Allocation (Blei et al., 2003)

and related methods. These unsupervised measurement methods for latent
variables on a simplex, where the units of interest (typically documents) are
described as a mixture of categories, with weights that add to one. These
models share some features with classification (measurement of a categorical
latent variable) and some with scaling (measurement of a continuous latent
variable), which were covered in previous chapters.
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Multilevel Measurement Models

To be written. . .
This chapter will explore the use of multilevel data and multilevel models

in measurement. This will include several kinds of measurement strategies.
First, methods combine evidence from multiple scales or multiple raters into
a consensus scale. Second, methods such as multilevel regression and post-
stratification that use individual-level data to measure attributes of aggregate
units (often, but not necessarily, geographic areas).
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Structural Measurement Models

To be written. . .
This chapter will explore the use of structural models of behaviour or

choice that connect observable data to target quantities to be measured. This
will start by discussing standard methods for reducing social desirability bias
such as randomised response models and list experiments. Then, the chapter
will develop connections between models of choice and methods for measur-
ing continuous variables introduced in previous chapters. Finally, the chapter
will discuss general strategies and direct readers towards relevant modelling
and estimation techniques that are necessary to develop custom measurement
strategies for particular problems.





18
Missing Indicators and Comparability

To be written. . .
This chapter will introduce standard terminology for discussing missing

data. The concepts of differential item functioning and measurement equiv-
alence will be introduced and applied to examples. Strategies for managing
missingness, and their limitations, will be introduced and discussed.





19
Conclusion

To be written. . .
This chapter will gesture vaguely at contemporary developments. In par-

ticular, I will discuss the potential of machine learning and AI methods for
helping us measure things we want to measure. I will also discuss the peril
these approaches present in distracting us from being clear about what it is we
are trying to measure and what it would mean to measure well versus poorly.
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