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Motivation

The planner of an observational study should always ask the
question, “How would the study be conducted if it were
possible to do it by controlled experimentation?”

– Cochran, 1965

▶ Randomization aids causal inference because in expectation it
balances observed & unobserved confounders

▶ When we cannot randomize we can design studies to capture the
central strength of randomized experiments:

• have treatment & control groups that are as comparable as
possible

• i.e. we can try to control for observed covariates
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Identification under Selection on Observables

Week 3: Selection on Observables I Identification under Selection on Observables 4 / 64



Intuition

Last week
▶ Randomization means that treatment assignment is independent

of potential outcomes

This (and next) week
▶ Assume treatment is not randomized, but is independent of

potential outcomes so long as other factors are held fixed

Intuition
We are assuming that among units with the same values for some
covariate X (i.e. conditional on 𝑋), the treatment is “as good as
randomly” assigned.
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Identification under Selection on Observables

Identification Assumption

1. Potential outcomes independent of 𝐷𝑖 given 𝑋𝑖: (𝑌1𝑖, 𝑌0𝑖)⊥⊥𝐷𝑖|𝑋𝑖
(“selection on observables” or “conditional independence assumption”)

2. 0 < Pr(𝐷 = 1|𝑋) < 1 for all 𝑋 (common support)

Identification Result
Given selection on observables we have

𝐸[𝑌1𝑖 − 𝑌0𝑖|𝑋𝑖] = 𝐸[𝑌1𝑖 − 𝑌0𝑖|𝑋𝑖, 𝐷𝑖 = 1] (CIA)
= 𝐸[𝑌1𝑖|𝑋𝑖, 𝐷𝑖 = 1] − 𝐸[𝑌0𝑖|𝑋𝑖, 𝐷𝑖 = 1]
= 𝐸[𝑌1𝑖|𝑋𝑖, 𝐷𝑖 = 1] − 𝐸[𝑌0𝑖|𝑋𝑖, 𝐷𝑖 = 0] (CIA)
= 𝐸[𝑌𝑖|𝑋𝑖, 𝐷𝑖 = 1] − 𝐸[𝑌𝑖|𝑋𝑖, 𝐷𝑖 = 0]

Implies that for any specific value for 𝑋𝑖, i.e. 𝑥𝑖, we can define the conditional
average treatment effect (𝛿𝑥):

𝛿𝑥 ≡ 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥, 𝐷𝑖 = 1] − 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥, 𝐷𝑖 = 0]
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Identification under Selection on Observables

Identification Assumption

1. Potential outcomes independent of 𝐷𝑖 given 𝑋𝑖: (𝑌1𝑖, 𝑌0𝑖)⊥⊥𝐷𝑖|𝑋𝑖
(“selection on observables” or “conditional independence assumption”)

2. 0 < Pr(𝐷 = 1|𝑋) < 1 for all 𝑋 (common support)

Identification Result
Therefore, under the common support condition and with a discrete 𝑋𝑖, we can
calculate average effects of 𝐷𝑖 on 𝑌𝑖 by taking weighted averages of 𝛿𝑥:

̂𝜏ATE = ∑
𝑥

𝛿𝑥𝑃(𝑋𝑖 = 𝑥)

̂𝜏ATT = ∑
𝑥

𝛿𝑥𝑃(𝑋𝑖 = 𝑥|𝐷𝑖 = 1)

̂𝜏ATC = ∑
𝑥

𝛿𝑥𝑃(𝑋𝑖 = 𝑥|𝐷𝑖 = 0)

i.e. where the weights are the distribution of 𝑋𝑖 in the population ( ̂𝜏ATE),
treatment group ( ̂𝜏ATT), and control group ( ̂𝜏ATC).
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Identification under Selection on Observables

This indentification assumption and result is common to all the
methods we will study this week and next week.

▶ Subclassification (today)
▶ Matching (today)
▶ Regression (next week)

These differ in

a. how we condition on 𝑋𝑖 and
b. how we weight 𝛿𝑥.
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Illustrative example

Does teacher training improve university applications?
Imagine that some school teachers take specialist training in how to
prepare their students for university applications. Teachers select into
the training program (i.e. they are not randomly assigned). You
believe, however, that conditional on the type of school in which a
teacher teachers, training is as good as random.

▶ 𝑌𝑖: Number of students applying for top universities
▶ 𝐷𝑖: 1 if the teacher did the training, 0 otherwise
▶ 𝑋𝑖: Whether the teacher is at a state, private, or public school
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Illustrative example

You collect some data and notice
that teacher training is associated
with teachers’ school-types:

You also notice that average
student applications are associated
with school-type and teacher
training:

𝑋𝑖, 𝐷𝑖 joint distribution
𝐷𝑖 = 0 𝐷𝑖 = 1

𝑋𝑖 = State 0.30 0.05
𝑋𝑖 = Private 0.15 0.15
𝑋𝑖 = Public 0.05 0.30

Mean outcomes
𝐷𝑖 = 0 𝐷𝑖 = 1

𝑋𝑖 = State 0 2
𝑋𝑖 = Private 3 4
𝑋𝑖 = Public 5 5
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Illustrative example

𝑋𝑖, 𝐷𝑖 joint distribution
𝐷𝑖 = 0 𝐷𝑖 = 1

𝑋𝑖 = State 0.30 0.05
𝑋𝑖 = Private 0.15 0.15
𝑋𝑖 = Public 0.05 0.30

Mean outcomes
𝐷𝑖 = 0 𝐷𝑖 = 1

𝑋𝑖 = State 0 2
𝑋𝑖 = Private 3 4
𝑋𝑖 = Public 5 5

Given this information, calculate the difference in group means
between teachers who did the extra training and those who did not:

DIGM ≡ 𝐸[𝑌𝑖|𝐷𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 0]

= (0.05 × 2 + 0.15 × 4 + 0.3 × 5)
1
2

− (0.3 × 0 + 0.15 × 3 + 0.05 × 5)
1
2

= 3

Is the DIGM an unbiased estimator of the ATE?

No, we are assuming that the treatment is independent of potential
outcomes conditional on X.
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Illustrative example

▶ Selection on observables implies that the DIGM is an unbiased
estimator for the ATE within levels of 𝑋𝑖.

So let’s calculate those:
Mean outcomes

𝐷𝑖 = 0 𝐷𝑖 = 1 𝛿𝑥

𝑋𝑖 = State 0 2 2
𝑋𝑖 = Private 3 4 1
𝑋𝑖 = Public 5 5 0

▶ We can then summarize the effect of 𝐷𝑖 on 𝑌𝑖 by taking
weighted averages of 𝛿𝑥

• The weights are determined by our estimand of interest
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ATE vs ATT vs ATC

Distribution of 𝑋𝑖 conditional on 𝐷𝑖
Control Treatment Population

𝑋𝑖 = State 0.6 0.1 0.35
𝑋𝑖 = Private 0.3 0.3 0.30
𝑋𝑖 = Public 0.1 0.6 0.35

▶ ATE → weights 𝛿𝑥 by the distribution of 𝑋𝑖 in the population
▶ ATT → weights 𝛿𝑥 by the distribution of 𝑋𝑖 in the treatment

group
▶ ATC → weights 𝛿𝑥 by the distribution of 𝑋𝑖 in the control group

Common support implies that no weight is put on cells where there
is 0 or 1 probability of treatment (because the 𝛿𝑥 is undefined)

Week 3: Selection on Observables I Identification under Selection on Observables 13 / 64



Illustrative example
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Illustrative example

ATE ATT ATC DIGM
1 0.5 1.5 3

▶ Why is the DIGM bigger than all the ̂𝜏 here?
• …Because of selection bias

▶ Why are ATE, ATT, and ATC the same in a randomized
experiment?

• …Because the distribution of ’types of people’ (according to a set
of covariates 𝑋) between treatment and control group is the
same, in expectation, due to randomisation

• In a selection on observables design, that is often not the case
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Confounding and Post-Treatment Bias
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What should we select on?

Restate of the CIA:
Potential outcomes for control units are the same as for treated units,
when those units have the same covariate values (𝑋𝑖).

Question:
Which covariates make this assumption true?

Answer:
We do not know! This is an untestable assumption.

But, there are two ways in which it might fail:

1. Selection bias (confounding variable we have not included)
2. Post-treatment bias (included control is actually an outcome)
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Selection bias ≡ confounding

▶ Selection bias is just another name for confounding
▶ Confounding is the bias caused by common causes of the

treatment and the outcome
▶ If we fail to account for any confounding variable 𝑍𝑖 that is

related to both 𝐷𝑖 and 𝑌𝑖, then our identification assumption
may be wrong

• Though if our controls correlate with unobserved confounders, we
might be OK

▶ In general, this is an untestable assumption though it is
sometimes possible to provide indirect evidence

▶ More on this next week.
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Identification under Selection on Observables is hard

We must remember that selection on observables is a large
concession, which should not be made lightly. It is of far
greater relevance than the technical discussion on the best
way to condition on covariates. […] The identification as-
sumption for both OLS and matching is the same: selection
on observables.

– Sekhon, 2009

▶ SOB research design depend entirely on the plausibility of
treatment being conditionally independent of potential outcomes
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Do not control for post-treatment variables

Does civic education increase voter turnout?
You are studying the effects of participating in a civic education
programme on voter turnout. You also collect data on whether
participants have high or low levels of political interest, where
political interest is measured after the education programme has
been run.

▶ 𝑌𝑖 is the outcome (voted = 1, not voted = 0)
▶ 𝐷𝑖 is the treatment (participated = 1, did not participate = 0)
▶ 𝑍𝑖 is a post-treatment covariate (high interest = 1, low

interest = 0)
We may wish to know the effects of education independent of political
interest, so we might be tempted to control for political interest.

WE. SHOULD. NOT. DO. THIS.

Why?
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Do not control for post-treatment variables

Notice first that every respondent has 2 potential 𝑌𝑖 outcomes, and 2
potential 𝑍𝑖 outcomes:

𝑌𝑖 = { 𝑌1𝑖 if 𝐷𝑖 = 1
𝑌0𝑖 if 𝐷𝑖 = 0 𝑍𝑖 = { 𝑍1𝑖 if 𝐷𝑖 = 1

𝑍0𝑖 if 𝐷𝑖 = 0
Consider the difference in mean outcome for those with high political
interest:

DIGM𝑍𝑖=1 = 𝐸[𝑌𝑖|𝑍𝑖 = 1, 𝐷𝑖 = 1] − 𝐸[𝑌𝑖|𝑍𝑖 = 1, 𝐷𝑖 = 0]
= 𝐸[𝑌1𝑖|𝑍1𝑖 = 1, 𝐷𝑖 = 1] − 𝐸[𝑌0𝑖|𝑍0𝑖 = 1, 𝐷𝑖 = 0]
= 𝐸[𝑌1𝑖 − 𝑌0𝑖|𝑍1𝑖 = 1, 𝐷𝑖 = 1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Causal effect

+

(𝐸[𝑌0𝑖|𝑍1𝑖 = 1, 𝐷𝑖 = 1] − 𝐸[𝑌0𝑖|𝑍0𝑖 = 1, 𝐷𝑖 = 0])⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Selection bias

These are not the same!
▶ 𝑍1𝑖 = 1 → High political interest with civic education
▶ 𝑍0𝑖 = 1 → High political interest without civic education
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Do not control for post-treatment variables

▶ Intuition: introducing post-treatment variables means that you
are, by design, not comparing similar units

▶ Post-treatment bias is a problem even when the treatment is
fully randomized (i.e. experiments will not save you)

▶ Post-treatment bias is only not a problem if the treatment does
not affect 𝑍𝑖 (very difficult to establish in most settings)

▶ Post-treatment bias can occur if
• You control for a post-treatment variable
• You control for a proxy variable that is measured after the

treatment
• You drop or select observations based on a post-treatment

criterion

Overall lesson?

DO. NOT. CONDITION. ON. POST-TREATMENT. VARIABLES.
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Subclassification
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Running example

Do UN interventions Cause Peace?
Gilligan and Sergenti (2008) investigate whether UN peacekeeping
operations have a causal effect on building sustainable peace after
civil wars. They study 87 post-Cold-War conflicts, and evaluate
whether peace lasts longer after conflict in 19 situations in which the
UN had a peacekeeping mission compared to 68 situations where it
did not.

▶ 𝑌𝑖: Peace duration (measured in months)
▶ 𝐷𝑖: 1 if the UN intervened post-conflict, 0 otherwise
▶ 𝑋1,𝑖: Region of conflict (categorical)
▶ 𝑋2,𝑖: Democracy in the past (binary, based on polity)
▶ 𝑋3,𝑖: Ethnic Fractionalization (continuous)
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Naive estimate

naive_diff <- mean(peace$dur[peace$UN == 1]) -
mean(peace$dur[peace$UN == 0])

naive_diff

## [1] 74.4

Naive difference: peace lasted about 6 years longer, on average, in
situations where the UN intervened.
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Subclassification

▶ Subclassification is an estimation approach suitable for instances
where we have categorical 𝑋𝑖 variables (or where we make our
𝑋𝑖 discrete)

▶ We already covered subclassification in the teachers example,
but let’s fix ideas here with our UN data.

Procedure:
1. Define subclasses
2. Calculate difference in mean outcome for treatment and control

within each subclass
3. Calculate average treatment effects by taking weighted averages
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Subclassification

Our subclasses here are the ten groups defined by the region and
democracy variables:

Number of observations

E. Europe L. America SS Africa Asia N Africa/Middle East

Non-democracy 10 3 21 7 8
Democracy 7 9 14 6 2

▶ For instance, in this sample there are:
• 10 post-conflict instances in Eastern European countries that

were formerly non-democracies
• 14 post-conflict instances in Sub-saharan African countries that

were formerly democracies
• etc
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Treated and control observations per subclass

How many treatment and control units do we have per subclass?

(Treated N, Control N)

E. Europe L. America SS Africa Asia N Africa/Middle East

Non-democracy (5,5) (2,1) (4,17) (0,7) (1,7)
Democracy (2,5) (2,7) (2,12) (0,6) (1,1)

▶ Is the common support assumption violated for any of these
cells?
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Difference in means per subclass

What is the conditional average treatment effect within each
subclass?

𝛿𝑥 (i.e. CATE)

E. Europe L. America SS Africa Asia N Africa/Middle East

Non-democracy -29.2 144.0 27.9 NA 123.7
Democracy 66.8 5.1 49.0 NA 132.0

▶ Note that these are simply the difference in means estimates
between treated and non-treated groups, within each subclass
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Average Treatment Effects

(Treated N, Control N)
E. Europe L. America SS Africa Asia N Africa/Middle East

Non-democracy (5,5) (2,1) (4,17) (0,7) (1,7)
Democracy (2,5) (2,7) (2,12) (0,6) (1,1)

𝛿𝑥 (i.e. CATE)
E. Europe L. America SS Africa Asia N Africa/Middle East

Non-democracy -29.2 144.0 27.9 NA 123.7
Democracy 66.8 5.1 49.0 NA 132.0

𝐴𝑇 𝑇 = ∑
𝑥

𝛿𝑥𝑃(𝑋𝑖 = 𝑥|𝐷𝑖 = 1)

= −29.2 × 5/19 + 66.8 × 2/19 + 144 × 2/19 + 5.1 × 2/19

+27.9 × 4/19 + 49 × 2/19 + 123.7 × 1/19 + 132 × 1/19

= 39.53

(i.e. weight by the proportion of treated observations in each cell)
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Average Treatment Effects

(Treated N, Control N)
E. Europe L. America SS Africa Asia N Africa/Middle East

Non-democracy (5,5) (2,1) (4,17) (0,7) (1,7)
Democracy (2,5) (2,7) (2,12) (0,6) (1,1)

𝛿𝑥 (i.e. CATE)
E. Europe L. America SS Africa Asia N Africa/Middle East

Non-democracy -29.2 144.0 27.9 NA 123.7
Democracy 66.8 5.1 49.0 NA 132.0

𝐴𝑇 𝐸 = ∑
𝑥

𝛿𝑥𝑃(𝑋𝑖 = 𝑥)

= −29.2 × 10/74 + 66.8 × 7/74 + 144 × 3/74 + 5.1 × 9/74

+27.9 × 21/74 + 49 × 14/74 + 123.7 × 8/74 + 132 × 2/74

= 42.96

(i.e. weight by the proportion of all observations in each cell)
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Average Treatment Effects

(Treated N, Control N)
E. Europe L. America SS Africa Asia N Africa/Middle East

Non-democracy (5,5) (2,1) (4,17) (0,7) (1,7)
Democracy (2,5) (2,7) (2,12) (0,6) (1,1)

𝛿𝑥 (i.e. CATE)
E. Europe L. America SS Africa Asia N Africa/Middle East

Non-democracy -29.2 144.0 27.9 NA 123.7
Democracy 66.8 5.1 49.0 NA 132.0

𝐴𝑇 𝐶 = ∑
𝑥

𝛿𝑥𝑃(𝑋𝑖 = 𝑥|𝐷𝑖 = 0)

= −29.2 × 5/55 + 66.8 × 5/55 + 144 × 1/55 + 5.1 × 7/55

+27.9 × 17/55 + 49 × 12/55 + 123.7 × 7/55 + 132 × 1/55

= 44.14

(i.e. weight by the proportion of control observations in each cell)
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Average Treatment Effects

ATT → 39.53

ATE → 42.96

ATC → 44.14

These are all somewhat smaller than the raw DIGM (74.4).

Note that we are not really calculating ATC here:
▶ We cannot identify either of the 𝛿𝑥 for the Asian countries.
▶ ATC ends up being a somewhat odd quantity: the average

treatment effect for the control observations that have overlap
with treated observations.
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Are 𝑌1𝑖, 𝑌0𝑖⊥⊥𝐷𝑖|𝑋𝑖?

Subclassification is helpful for clarifying the CIA → we are assuming
that treatment is “as good as random” within subclass.

Are we convinced by this assumption?
▶ Region and democratic history are probably not sufficient

• What other 𝑋𝑖 variables would it be important to condition upon?

▶ Subclassification is restricted to categorical 𝑋𝑖.
• Not appropriate if key conditioning factors are continuous
• e.g. Here we had to ‘discrete-ize’ the polity score

Is there a better way?
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Matching: Theory
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Matching

Recall the fundamental problem of causal inference:

𝑌𝑖 = 𝐷𝑖 ⋅ 𝑌1𝑖 + (1 − 𝐷𝑖) ⋅ 𝑌0𝑖

so

𝑌𝑖 = { 𝑌1𝑖 if 𝐷𝑖 = 1
𝑌0𝑖 if 𝐷𝑖 = 0

▶ One way of viewing this is as a missing data problem
• i.e We observe half the potential outcomes for each unit, but not

the other half
▶ One solution: impute the missing outcomes

→ This is what matching does
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Matching

For each unit 𝑖, find the “closest” unit 𝑗 with opposite treatment
status and impute 𝑗’s outcome as the unobserved potential outcome
for 𝑖

̂𝜏ATT = 1
𝑁1

∑
𝐷𝑖=1

(𝑌𝑖 − 𝑌𝑗(𝑖))

▶ where 𝑌𝑗(𝑖) is the observed outcome for (untreated) unit 𝑗, the
closest match to 𝑖

• i.e. 𝑋𝑗(𝑖) is closest to 𝑋𝑖 among the untreated observations.

It is also possible to use the average for the 𝑀 closest matches:

̂𝜏ATT = 1
𝑁1

∑
𝐷𝑖=1

{𝑌𝑖 − ( 1
𝑀

𝑀
∑
𝑚=1

𝑌𝑗𝑚(𝑖))}

⇒ We could impute potential outcomes for control units and define
the ATE/ATC equivalently.

Week 3: Selection on Observables I Matching: Theory 37 / 64



Nearest Neighbour, Single X, 𝑀 = 1, wth Replacement

NN 1:1 Matching
Country D EthFrac Region 𝑌0𝑖 𝑌1𝑖

Liberia 1 83 SS Africa ?3 51
Sierra Leone 1 77 SS Africa ?11 35
Zaire 1 90 SS Africa ?3 23

Chad 0 83 SS Africa 3
Senegal 0 72 SS Africa 11
Niger 0 73 SS Africa 11

What is the ̂𝜏𝐴𝑇 𝑇 ?

̂𝜏ATT = 1
𝑁1

∑
𝐷𝑖=1

(𝑌𝑖 − 𝑌𝑗(𝑖))

= (51 − 3) × 1/3 + (35 − 11) × 1/3 + (23 − 3) × 1/3

= 30.7
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Nearest Neighbour, Single X, 𝑀 = 2, wth Replacement

NN 2:1 Matching
Country D EthFrac Region 𝑌0𝑖 𝑌1𝑖

Liberia 1 83 SS Africa ?7 51
Sierra Leone 1 77 SS Africa ?11 35
Zaire 1 90 SS Africa ?7 23

Chad 0 83 SS Africa 3
Senegal 0 72 SS Africa 11
Niger 0 73 SS Africa 11

What is the ̂𝜏𝐴𝑇 𝑇 ?

̂𝜏ATT = 1
𝑁1

∑
𝐷𝑖=1

(𝑌𝑖 − 1
𝑀

𝑀
∑
𝑚=1

𝑌𝑗𝑚(𝑖))

= (51 − 7) × 1/3 + (35 − 11) × 1/3 + (23 − 7) × 1/3

= 28
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More 𝑋 variables

Commonly we will want to match on many 𝑋 variables, not just one
or two.

In our UN example, for instance, we might also include:
▶ Number of deaths in last war
▶ Duration of last war
▶ Ethnic fractionalization
▶ Military personnel
▶ Population size
▶ Mountains

Is this enough? What else? Are any of these post-treatment?
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Matching distances

Adding more covariates creates a problem, however. We have to
define how we measure whether two units are “close” to one another.

Which is “closer”?
▶ Treated case:

• Haiti, with polity = -6, region = Latin America, and ethfrac = 1

▶ Control cases:
• Panama, with polity = 8, region = Latin America, ethfrac = 3
• Egypt, with polity = -7, region = N Africa, ethfrac = 4
• El Salvador, with polity = -6, region = Latin America, ethfrac =

26

→ We need a metric that takes 2 vectors of covariate values and
projects them to a unidimensional scale
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Matching distances

Exact matching
▶ Match 𝑗 with 𝑖 if 𝑗 has identical covariates to 𝑖
▶ Rapidly breaks down with dimensionality of X, or with continuous 𝑋𝑖

Normalized Euclidian distance
▶ Scale distances on each variable by the inverse of sample variance
▶ Good with normally distributed 𝑋, not great with binary data

Mahalanobis distance
▶ Scale distances on each 𝑋 by the inverse of the covariance matrix
▶ Good with normally distributed 𝑋, not great with binary data

Genetic matching
▶ Genetic matching aims directly to find the set of matches that minimize

covariate imbalance across all variables
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Mahalonobis distances
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Other matching considerations

What size for 𝑀? 1-to-1? Many-to-1?
▶ Small M: decreased bias (2nd match always further than first)
▶ Large M: decreased variance (larger matched sample)

Matching with or without replacement?
▶ With replacement: decreased bias because some controls will be good

matches for multiple treatment units
▶ But: replacement makes inference more complicated as matched controls are

no longer independent (larger standard errors)

Breaking ‘ties’
▶ When two controls are equally “close” to a treated unit
▶ Option 1: Select one at random (but: no unique answer)
▶ Option 2: Average the tied observed outcomes

Which treatment effect? (ATE/ATC/ATT)
▶ Depends on substantive interest, also on available matches
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𝑀 and matching with/out replacement
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𝑀 and matching with/out replacement
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𝑀 and matching with/out replacement
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𝑀 and matching with/out replacement
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𝑀 and matching with/out replacement
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Matching: Implementation
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Matching in practice

library(MatchIt)

matched.out.att <- matchit(UN ~ lwdeaths + lwdurat + ethfrac + pop +
milper + bwplty2 + lmtnest + ssafrica +
lamerica + eeurop,

data = peace,
method = "nearest", # nearest neighbour, default
distance = "mahalanobis", # can also be set manually
ratio = 1, # number of matches, default
replace = T, # with replacement
estimand = "ATT" # default
)

matched.out.att

## A matchit object
## - method: 1:1 nearest neighbor matching with replacement
## - distance: Mahalanobis
## - number of obs.: 87 (original), 36 (matched)
## - target estimand: ATT
## - covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssafrica, lamerica, eeurop
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Matched data

matched.data.att <- match.data(matched.out.att)
matched.data.att[c(1,5,7),c("cname","dur","UN","weights")]

## cname dur UN weights
## 2 Haiti 143 1 1.0000000
## 9 Panama 169 0 0.8947368
## 12 Paraguay 177 0 1.7894737
# weights in treatment group (sum of weights = nobs in treatment group)
summary(matched.data.att$weights[matched.data.att$UN==1])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1 1 1 1 1 1
# weights in control group (sum of weights = nobs in control group)
summary(matched.data.att$weights[matched.data.att$UN==0])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.8947 0.8947 0.8947 1.0000 0.8947 1.7895
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Matching weights

The weights are key here, as they ensure that treatment and control
group are balanced with respect to the observable confounders.

▶ With replacement: 𝑤𝑗(𝑖) = ∑𝑛𝑖(𝑗)
𝑖=1

1
𝑘𝑖(𝑗)

× 𝑛𝑗
𝑛𝑖

• 𝑖 are the observations for which 𝑗 is a match
• 𝑘𝑖(𝑗) is the total number of matches for 𝑖
• 𝑛𝑖 is the number of units with the same treatment status as 𝑖
• 𝑛𝑗 is the number of units with the same treatment status as 𝑗

▶ Without replacement: 𝑤𝑗(𝑖) = 𝑠𝑝𝑗(𝑖)
1−𝑠𝑝𝑗(𝑖)

× 𝑛𝑗
𝑛𝑖

• 𝑠𝑝𝑗(𝑖) is the share of treated units in the matched pair or stratum
𝑗 belongs to

▶ Sampling weights can also be incorporated by supplying the
relevant variable name in the s.weights = option
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Matching weights

Weights for control units in this example (ATT, 1:1, with
replacement)
# Weight for control unit used twice
(1/1 + 1/1)*17/19

## [1] 1.789474
matched.data.att$weights[matched.data.att$cname=="Paraguay"]

## [1] 1.789474
# Weight for control unit used once
(1/1)*17/19

## [1] 0.8947368
matched.data.att$weights[matched.data.att$cname=="Panama"]

## [1] 0.8947368
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Calculating the estimate

# Now estimate the treatment effect (ATT) with regression
match.att <- lm(dur ~ UN ,

data = matched.data.att,
weights = weights) ## !

# ATT
coef(match.att)[2]

## UN
## 20.84211
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Assessing balance

After matching, the distribution of X should be the same for
treatment and control groups:

▶ Many papers will present tables of covariate means and p-values
before and after matching as evidence of comparability

▶ Strictly speaking, p-value are not very informative, as they are
sensitive to changes in the sample size

▶ Instead, it is useful to measure the standardized bias of a
covariate before and after matching and compare:

bias𝑋𝑖
= �̄�𝑡 − �̄�𝑐

𝜎𝑡

where 𝜎𝑡 is the standard deviation of 𝑋 in the full treated group.
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Assessing balance
plot(summary(matched.out.att), abs = F,

position = "topleft",var.order = "matched")
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Genetic matching in practice

set.seed(123)
gen.matched.out.att <- matchit(UN ~ lwdeaths + lwdurat + ethfrac + pop +

milper + bwplty2 + lmtnest + ssafrica +
lamerica + eeurop,

data = peace,
method = "genetic",
distance = "mahalanobis",
ratio = 1,
replace = T,
estimand = "ATT",
pop.size=1000)

gen.matched.out.att

## A matchit object
## - method: 1:1 genetic matching with replacement
## - distance: Mahalanobis
## - number of obs.: 87 (original), 33 (matched)
## - target estimand: ATT
## - covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssafrica, lamerica, eeurop
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Calculating the estimate

# get matched data
gen.matched.data.att <- match.data(gen.matched.out.att)

# Now estimate with regression
gen.match.att <- lm(dur ~ UN,

data = gen.matched.data.att,
weights = weights)

# ATT
coef(gen.match.att)[2]

## UN
## 35.36842
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Assessing balance
plot(summary(gen.matched.out.att),abs = F,

position = "topleft",var.order = "matched")
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Consequences of matching decisions

ATT’s from different matches
M Replacement Distance ATT

1 Yes euclidean 43.47
1 No euclidean 51.90
2 Yes euclidean 33.12
2 No euclidean 44.55
1 Yes mahalanobis 22.98
1 No mahalanobis 21.04
2 Yes mahalanobis 32.92
2 No mahalanobis 37.13
1 Yes genetic 50.57
1 No genetic 44.90
2 Yes genetic 48.59
2 No genetic 28.50

Implication: Even using the same covariates, different matching
criteria can lead to different outcomes! Particularly when 𝑁 is small.
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Consequences of matching decisions

One approach is to pick the matching procedure that results in the
smallest standardized difference in means across all covariates:

Bias & ATT’s from different matches
M Replacement Distance ATT Mean absolute bias

1 Yes euclidean 43.47 0.36
1 No euclidean 51.9 0.32
2 Yes euclidean 33.12 0.4
2 No euclidean 44.55 0.42
1 Yes mahalanobis 22.98 0.28
1 No mahalanobis 21.04 0.29
2 Yes mahalanobis 32.92 0.26
2 No mahalanobis 37.13 0.34
1 Yes genetic 50.57 0.13
1 No genetic 44.9 0.18
2 Yes genetic 48.59 0.17
2 No genetic 28.5 0.31
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Matching advice

While extensive time and effort is put into the careful design
of randomized experiments, relatively little effort is put into
the corresponding ‘design’ of non-experimental studies.

– Stuart, 2010

Best practice is to design without access to outcome variables:

1. Look at data without outcome variables; design matching
strategy

• 1 to 1; many to 1; with/without replacement, etc

2. Test covariate balance; if unbalanced, go back to 1

3. Compare outcomes only after matching is completed.
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Conclusion

▶ By assuming treatments are “as good as random” conditional on
𝑋, we can make causal claims from non-experimental data

▶ How convincing our causal claims are is entirely determined by
how plausible this assumption seems in a given context

▶ We should condition on all potentially confounding variables
▶ We should not condition on any post-treatment variables
▶ Matching and subclassification are two approaches to

conditioning
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