Week 3: Selection on Observables I Matching and Subclassification PUBL0050 Causal Inference

Julia de Romémont

Term 2 2023-24 UCL Departement of Political Science The planner of an observational study should always ask the question, "**How would the study be conducted if it were possible to do it by controlled experimentation?**" – Cochran, 1965

- Randomization aids causal inference because in expectation it balances observed & unobserved confounders
- When we cannot randomize we can design studies to capture the central strength of randomized experiments:
 - have treatment & control groups that are as comparable as possible
 - i.e. we can try to **control for** *observed* covariates

Identification under Selection on Observables

Confounding and Post-Treatment Bias

Subclassification

Matching: Theory

Matching: Implementation

Identification under Selection on Observables

Last week

 Randomization means that treatment assignment is independent of potential outcomes

This (and next) week

Assume treatment is not randomized, but is independent of potential outcomes so long as other factors are held fixed

Intuition

We are assuming that among units with the same values for some covariate X (i.e. **conditional on** X), the treatment is "as good as randomly" assigned.

Identification Assumption

 Potential outcomes independent of D_i given X_i: (Y_{1i}, Y_{0i})⊥D_i|X_i ("selection on observables" or "conditional independence assumption")
 0 < Pr(D = 1|X) < 1 for all X (common support)

Identification Result

Given selection on observables we have

$$\begin{split} E[Y_{1i} - Y_{0i}|X_i] &= E[Y_{1i} - Y_{0i}|X_i, D_i = 1] \quad (\textit{CIA}) \\ &= E[Y_{1i}|X_i, D_i = 1] - E[Y_{0i}|X_i, D_i = 1] \\ &= E[Y_{1i}|X_i, D_i = 1] - E[Y_{0i}|X_i, D_i = 0] \quad (\textit{CIA}) \\ &= E[Y_i|X_i, D_i = 1] - E[Y_i|X_i, D_i = 0] \end{split}$$

Implies that for any specific value for X_i , i.e. x_i , we can define the **conditional** average treatment effect (δ_x) :

$$\delta_x \hspace{2mm} \equiv \hspace{2mm} E[Y_i|X_i=x, D_i=1] - E[Y_i|X_i=x, D_i=0]$$

Week 3: Selection on Observables I

Identification under Selection on Observables

Identification Assumption

 Potential outcomes independent of D_i given X_i: (Y_{1i}, Y_{0i})⊥D_i|X_i ("selection on observables" or "conditional independence assumption")
 0 < Pr(D = 1|X) < 1 for all X (common support)

Identification Result

Therefore, under the common support condition and with a discrete X_i , we can calculate average effects of D_i on Y_i by taking weighted averages of δ_x :

$$\begin{split} \hat{\tau}_{\textit{ATE}} &= \sum_{x} \delta_{x} P(X_{i} = x) \\ \hat{\tau}_{\textit{ATT}} &= \sum_{x} \delta_{x} P(X_{i} = x | D_{i} = 1) \\ \hat{\tau}_{\textit{ATC}} &= \sum_{x} \delta_{x} P(X_{i} = x | D_{i} = 0) \end{split}$$

i.e. where the weights are the distribution of X_i in the population ($\hat{\tau}_{ATE}$), treatment group ($\hat{\tau}_{ATT}$), and control group ($\hat{\tau}_{ATC}$).

Week 3: Selection on Observables I

Identification under Selection on Observables

This indentification assumption and result is common to all the methods we will study this week and next week.

- Subclassification (today)
- Matching (today)
- Regression (next week)

These differ in

- a. how we condition on X_i and
- **b**. how we weight δ_x .

Does teacher training improve university applications?

Imagine that some school teachers take specialist training in how to prepare their students for university applications. Teachers select into the training program (i.e. they are not randomly assigned). You believe, however, that conditional on the type of school in which a teacher teachers, training is as good as random.

- ▶ *Y_i*: Number of students applying for top universities
- \triangleright D_i : 1 if the teacher did the training, 0 otherwise
- \blacktriangleright X_i: Whether the teacher is at a state, private, or public school

You collect some data and notice that teacher training is associated with teachers' school-types: You also notice that average student applications are associated with school-type and teacher training:

X_i, D_i joint distribution			Mea	Mean outcomes			
	$D_i = 0$	$D_i = 1$		$D_i = 0$	$D_i = 1$		
$X_i = State$	0.30	0.05	$X_i = State$	0	2		
$X_i = Private$	0.15	0.15	$X_i = Private$. 3	4		
$X_i = Public$	0.05	0.30	$X_i = Public$	5	5		

X_i, D_i joint distribution			Mean outcomes				
	$D_i = 0$	$D_i = 1$	_		$D_i=0$	$D_i = 1$	
$X_i = State$	0.30	0.05	_	$X_i = State$	0	2	
$X_i = Private$	0.15	0.15		$X_i = Private$	3	4	
$X_i = Public$	0.05	0.30	-	$X_i = Public$	5	5	

Given this information, calculate the difference in group means between teachers who did the extra training and those who did not:

$$\begin{array}{rcl} \mathsf{DIGM} & \equiv & E[Y_i|D_i=1]-E[Y_i|D_i=0] \\ & = & \frac{(0.05\times2+0.15\times4+0.3\times5)}{\frac{1}{2}}-\frac{(0.3\times0+0.15\times3+0.05\times5)}{\frac{1}{2}} \\ & = & 3 \end{array}$$

Is the DIGM an unbiased estimator of the ATE?

No, we are assuming that the treatment is independent of potential outcomes **conditional on X**.

Week 3: Selection on Observables I

Identification under Selection on Observables

Selection on observables implies that the DIGM is an unbiased estimator for the ATE within levels of X_i.

So let's calculate those:

Mean outcomes						
$D_i = 0$ $D_i = 1$ δ_x						
$X_i = State$	0	2	2			
$X_i = Private$	3	4	1			
$X_i = Public$	5	5	0			

- We can then summarize the effect of D_i on Y_i by taking weighted averages of δ_x
 - The weights are determined by our estimand of interest

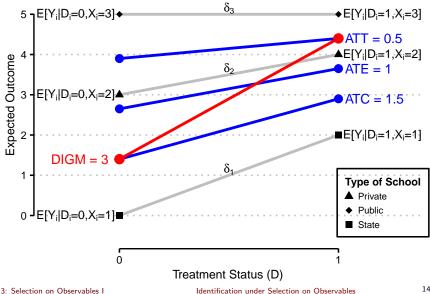
Distribution of X_i conditional on D_i							
Control Treatment Population							
$X_i = State$	0.6	0.1	0.35				
$X_i = Private$	0.3	0.3	0.30				
$X_i = Public$	0.1	0.6	0.35				

 \blacktriangleright ATE \rightarrow weights δ_x by the distribution of X_i in the population

- \blacktriangleright ATT \rightarrow weights δ_x by the distribution of X_i in the treatment group
- ATC \rightarrow weights δ_x by the distribution of X_i in the *control group*

Common support implies that no weight is put on cells where there is 0 or 1 probability of treatment (because the δ_x is undefined)

Week 3: Selection on Observables I



Week 3: Selection on Observables I

ATE	ATT	ATC	DIGM
1	0.5	1.5	3

- Why is the DIGM bigger than all the $\hat{\tau}$ here?
 - ...Because of selection bias
- Why are ATE, ATT, and ATC the same in a randomized experiment?
 - ...Because the distribution of 'types of people' (according to a set of covariates X) between treatment and control group is the same, in expectation, due to randomisation
 - In a selection on observables design, that is often not the case

Restate of the CIA:

Potential outcomes for control units are the same as for treated units, when those units have the same **covariate values** (X_i) .

Question:

Which covariates make this assumption true?

Answer:

We do not know! This is an **untestable** assumption.

But, there are two ways in which it might fail:

- 1. **Selection bias** (confounding variable we have not included)
- 2. Post-treatment bias (included control is actually an outcome)

- Selection bias is just another name for confounding
- Confounding is the bias caused by common causes of the treatment and the outcome
- ▶ If we fail to account for any confounding variable Z_i that is related to both D_i and Y_i, then our identification assumption may be wrong
 - Though if our controls correlate with unobserved confounders, we might be OK
- In general, this is an untestable assumption though it is sometimes possible to provide indirect evidence
- More on this next week.

We must remember that selection on observables is a large concession, which should not be made lightly. It is of far greater relevance than the technical discussion on the best way to condition on covariates. [...] The identification assumption for both OLS and matching is the same: selection on observables.

- Sekhon, 2009

 SOB research design depend entirely on the plausibility of treatment being conditionally independent of potential outcomes

Does civic education increase voter turnout?

You are studying the effects of participating in a civic education programme on voter turnout. You also collect data on whether participants have high or low levels of political interest, where political interest is measured **after the education programme has been run**.

- Y_i is the outcome (voted = 1, not voted = 0)
- D_i is the treatment (participated = 1, did not participate = 0)
- Z_i is a post-treatment covariate (high interest = 1, low interest = 0)

We may wish to know the effects of education independent of political interest, so we might be tempted to control for political interest.

WE. SHOULD. NOT. DO. THIS.

Why?

Week 3: Selection on Observables I

Notice first that every respondent has 2 potential Y_i outcomes, and 2 potential Z_i outcomes:

$$Y_i = \left\{ \begin{array}{ll} Y_{1i} & \text{if } D_i = 1 \\ Y_{0i} & \text{if } D_i = 0 \end{array} \right. \qquad \qquad Z_i = \left\{ \begin{array}{ll} Z_{1i} & \text{if } D_i = 1 \\ Z_{0i} & \text{if } D_i = 0 \end{array} \right.$$

Consider the difference in mean outcome for those with high political interest:

$$\begin{split} \mathsf{DIGM}_{Z_i=1} &= E[Y_i | Z_i = 1, D_i = 1] - E[Y_i | Z_i = 1, D_i = 0] \\ &= E[Y_{1i} | \textbf{Z}_{1i} = 1, D_i = 1] - E[Y_{0i} | \textbf{Z}_{0i} = 1, D_i = 0] \\ &= \underbrace{E[Y_{1i} - Y_{0i} | \textbf{Z}_{1i} = 1, D_i = 1]}_{\mathsf{Causal effect}} + \underbrace{(E[Y_{0i} | \textbf{Z}_{1i} = 1, D_i = 1] - E[Y_{0i} | \textbf{Z}_{0i} = 1, D_i = 0])}_{\mathsf{Selection bias}} \end{split}$$

These are not the same!

• $Z_{1i} = 1 \rightarrow$ High political interest with civic education • $Z_{0i} = 1 \rightarrow$ High political interest without civic education

Week 3: Selection on Observables I

Do not control for post-treatment variables

- Intuition: introducing post-treatment variables means that you are, by design, not comparing similar units
- Post-treatment bias is a problem even when the treatment is fully randomized (i.e. experiments will not save you)
- Post-treatment bias is only not a problem if the treatment does not affect Z_i (very difficult to establish in most settings)
- Post-treatment bias can occur if
 - You control for a post-treatment variable
 - You control for a proxy variable that is measured after the treatment
 - You drop or select observations based on a post-treatment criterion

Overall lesson?

DO. NOT. CONDITION. ON. POST-TREATMENT. VARIABLES.

Week 3: Selection on Observables I

Do UN interventions Cause Peace?

Gilligan and Sergenti (2008) investigate whether UN peacekeeping operations have a causal effect on building sustainable peace after civil wars. They study 87 post-Cold-War conflicts, and evaluate whether peace lasts longer after conflict in 19 situations in which the UN had a peacekeeping mission compared to 68 situations where it did not.

- Y_i : Peace duration (measured in months)
- ▶ D_i : 1 if the UN intervened post-conflict, 0 otherwise
- $X_{1,i}$: Region of conflict (categorical)
- $X_{2,i}$: Democracy in the past (binary, based on polity)
- $X_{3,i}$: Ethnic Fractionalization (continuous)

```
naive_diff <- mean(peace$dur[peace$UN == 1]) -
  mean(peace$dur[peace$UN == 0])
naive_diff</pre>
```

[1] 74.4

Naive difference: peace lasted about 6 years longer, on average, in situations where the UN intervened.

- Subclassification is an estimation approach suitable for instances where we have categorical X_i variables (or where we make our X_i discrete)
- We already covered subclassification in the teachers example, but let's fix ideas here with our UN data.

Procedure:

- 1. Define subclasses
- 2. Calculate difference in mean outcome for treatment and control within each subclass
- 3. Calculate average treatment effects by taking weighted averages

Our subclasses here are the ten groups defined by the region and democracy variables:

	E. Europe	L. America	SS Africa	Asia	N Africa/Middle East
Non-democracy	10	3	21	7	8
Democracy	7	9	14	6	2

Number of observations

▶ For instance, in this sample there are:

- 10 post-conflict instances in Eastern European countries that were formerly non-democracies
- 14 post-conflict instances in Sub-saharan African countries that were formerly democracies
- etc

How many treatment and control units do we have per subclass?

(Treated N, Control N)

	E. Europe	L. America	SS Africa	Asia	N Africa/Middle East
Non-democracy	(5,5)	(2,1)	(4,17)	(0,7)	(1,7)
Democracy	(2,5)	(2,7)	(2,12)	(0,6)	(1,1)

Is the common support assumption violated for any of these cells?

What is the conditional average treatment effect within each subclass?

 δ_x (i.e. CATE)

	E. Europe	L. America	SS Africa	Asia	N Africa/Middle East
Non-democracy	-29.2	144.0	27.9	NA	123.7
Democracy	66.8	5.1	49.0	NA	132.0

Note that these are simply the difference in means estimates between treated and non-treated groups, within each subclass

(Treated N, Control N)							
	E. Europe	L. America	SS Africa	Asia	N Africa/Middle East		
Non-democracy Democracy	(5,5) (2,5)	(2,1) (2,7)	(4,17) (2,12)	(0,7) (0,6)	(1,7) (1,1)		
	δ_x (i.e. CATE)						
	E. Europe	L. America	SS Africa	Asia	N Africa/Middle East		
Non-democracy Democracy	-29.2 66.8	144.0 5.1	27.9 49.0	NA NA	123.7 132.0		
$\begin{array}{lll} ATT &=& \displaystyle\sum_{x} \delta_{x} P(X_{i}=x D_{i}=1) \\ &=& -29.2 \times {}^{5}\!\!/_{19} + 66.8 \times {}^{2}\!\!/_{19} + 144 \times {}^{2}\!\!/_{19} + 5.1 \times {}^{2}\!\!/_{19} \end{array}$							
=	$+27.9 \times \frac{4}{19} + 49 \times \frac{2}{19} + 123.7 \times \frac{1}{19} + 132 \times \frac{1}{19}$ 39.53						

(i.e. weight by the proportion of treated observations in each cell)

Week 3: Selection on Observables I

(Treated N, Control N)							
	E. Europe	L. America	SS Africa	Asia	N Africa/Middle East		
Non-democracy Democracy	(5,5) (2,5)	(2,1) (2,7)	(4,17) (2,12)	(0,7) (0,6)	(1,7) (1,1)		
	δ_x (i.e. CATE)						
	E. Europe	L. America	SS Africa	Asia	N Africa/Middle East		
Non-democracy Democracy	-29.2 66.8	144.0 5.1	27.9 49.0	NA NA	123.7 132.0		
		-	10.0				
ATE =	$ATE \hspace{.1 in} = \hspace{.1 in} \sum_x \delta_x P(X_i = x)$						
$= -29.2 \times \frac{10}{74} + 66.8 \times \frac{7}{74} + 144 \times \frac{3}{74} + 5.1 \times \frac{9}{74}$							
	$+27.9 \times {}^{21}\!/_{74} + 49 \times {}^{14}\!/_{74} + 123.7 \times {}^{8}\!/_{74} + 132 \times {}^{2}\!/_{74}$ 42.96						

(i.e. weight by the proportion of **all** observations in each cell)

Week 3: Selection on Observables I

(Treated N, Control N)							
	E. Europe	L. America	SS Africa	Asia	N Africa/Middle East		
Non-democracy Democracy	(5,5) (2,5)	(2,1) (2,7)	(4,17) (2,12)	(0,7) (0,6)	(1,7) (1,1)		
	δ_x (i.e. CATE)						
	E. Europe	L. America	SS Africa	Asia	N Africa/Middle East		
Non-democracy Democracy	-29.2 66.8	144.0 5.1	27.9 49.0	NA NA	123.7 132.0		
$ATC = \sum_{x} \delta_{x} P(X_{i} = x D_{i} = 0)$							
$= -29.2 \times \frac{5}{55} + 66.8 \times \frac{5}{55} + 144 \times \frac{1}{55} + 5.1 \times \frac{7}{55} + 27.9 \times \frac{17}{55} + 49 \times \frac{12}{55} + 123.7 \times \frac{7}{55} + 132 \times \frac{1}{55} = 44.14$							

(i.e. weight by the proportion of **control** observations in each cell)

Week 3: Selection on Observables I

 $\begin{array}{l} \mathsf{ATT} \rightarrow 39.53 \\ \mathsf{ATE} \rightarrow 42.96 \\ \mathsf{ATC} \rightarrow 44.14 \end{array}$

These are all somewhat smaller than the raw DIGM (74.4).

Note that we are not really calculating ATC here:

- We cannot identify either of the δ_x for the Asian countries.
- ATC ends up being a somewhat odd quantity: the average treatment effect for the control observations that have overlap with treated observations.

Subclassification is helpful for clarifying the CIA \rightarrow we are assuming that treatment is "as good as random" within subclass.

Are we convinced by this assumption?

Region and democratic history are probably not sufficient

- What other X_i variables would it be important to condition upon?
- Subclassification is restricted to categorical X_i .
 - Not appropriate if key conditioning factors are continuous
 - e.g. Here we had to 'discrete-ize' the polity score

Is there a better way?

Matching: Theory

Matching

Recall the fundamental problem of causal inference:

$$Y_i = D_i \cdot Y_{1i} + (1-D_i) \cdot Y_{0i}$$

SO

$$Y_i = \left\{ \begin{array}{ll} Y_{1i} & \text{if } D_i = 1 \\ Y_{0i} & \text{if } D_i = 0 \end{array} \right.$$

- One way of viewing this is as a missing data problem
 - i.e We observe half the potential outcomes for each unit, but not the other half
- One solution: impute the missing outcomes
 - $\rightarrow\,$ This is what matching does

Matching

For each unit i, find the "closest" unit j with opposite treatment status and impute j 's outcome as the unobserved potential outcome for i

$$\hat{\tau}_{\mathsf{ATT}} = \frac{1}{N_1} \sum_{D_i=1} (Y_i - Y_{j(i)})$$

 \blacktriangleright where $Y_{j(i)}$ is the observed outcome for (untreated) unit j, the closest match to i

- i.e. $X_{j(i)}$ is closest to X_i among the untreated observations.

It is also possible to use the average for the ${\cal M}$ closest matches:

$$\hat{\tau}_{\mathsf{ATT}} = \frac{1}{N_1} \sum_{D_i=1} \left\{ Y_i - (\frac{1}{M} \sum_{m=1}^M Y_{j_m(i)}) \right\}$$

 \Rightarrow We could impute potential outcomes for control units and define the ATE/ATC equivalently.

Week 3: Selection on Observables I

Country	D	EthFrac	Region	Y_{0i}	Y_{1i}
Liberia	1	83	SS Africa	?3	51
Sierra Leone	1	77	SS Africa	?11	35
Zaire	1	90	SS Africa	?3	23
Chad	0	83	SS Africa	3	
Senegal	0	72	SS Africa	11	
Niger	0	73	SS Africa	11	

NN 1:1 Matching

What is the $\hat{\tau}_{ATT}$?

$$\begin{split} \hat{\tau}_{\mathsf{ATT}} &= \quad \frac{1}{N_1} \sum_{D_i=1} (Y_i - Y_{j(i)}) \\ &= \quad (51-3) \times {}^1\!/_3 + (35-11) \times {}^1\!/_3 + (23-3) \times {}^1\!/_3 \\ &= \quad 30.7 \end{split}$$

Week 3: Selection on Observables I

Nearest Neighbour, Single X, M = 2, wth Replacement

NN 2:1 Matching

Country	D	EthFrac	Region	Y_{0i}	Y_{1i}
Liberia	1	83	SS Africa	?7	51
Sierra Leone	1	77	SS Africa	?11	35
Zaire	1	90	SS Africa	?7	23
Chad	0	83	SS Africa	3	
Senegal	0	72	SS Africa	11	
Niger	0	73	SS Africa	11	

What is the $\hat{\tau}_{ATT}$?

$$\begin{split} \hat{\tau}_{\text{ATT}} &= \quad \frac{1}{N_1} \sum_{D_i=1} (Y_i - \frac{1}{M} \sum_{m=1}^M Y_{j_m(i)}) \\ &= \quad (51-7) \times \frac{1}{3} + (35-11) \times \frac{1}{3} + (23-7) \times \frac{1}{3} \\ &= \quad 28 \end{split}$$

Week 3: Selection on Observables I

Commonly we will want to match on many \boldsymbol{X} variables, not just one or two.

In our UN example, for instance, we might also include:

- Number of deaths in last war
- Duration of last war
- Ethnic fractionalization
- Military personnel
- Population size
- Mountains

Is this enough? What else? Are any of these post-treatment?

Adding more covariates creates a problem, however. We have to define how we measure whether two units are "close" to one another.

Which is "closer"?

- Treated case:
 - Haiti, with polity = -6, region = Latin America, and ethfrac = 1
- Control cases:
 - Panama, with polity = 8, region = Latin America, ethfrac = 3
 - Egypt, with polity = -7, region = N Africa, ethfrac = 4
 - El Salvador, with polity = -6, region = Latin America, ethfrac = 26

 \rightarrow We need a metric that takes 2 vectors of covariate values and projects them to a unidimensional scale

Exact matching

- Match j with i if j has identical covariates to i
- Rapidly breaks down with dimensionality of X, or with continuous X_i

Normalized Euclidian distance

- ▶ Scale distances on each variable by the inverse of sample variance
- ▶ Good with normally distributed *X*, not great with binary data

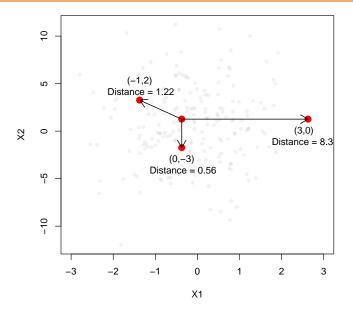
Mahalanobis distance

- ▶ Scale distances on each X by the inverse of the covariance matrix
- ▶ Good with normally distributed *X*, not great with binary data

Genetic matching

 Genetic matching aims directly to find the set of matches that minimize covariate imbalance across all variables

Mahalonobis distances



Week 3: Selection on Observables I

What size for M? 1-to-1? Many-to-1?

- Small M: decreased bias (2nd match always further than first)
- Large M: decreased variance (larger matched sample)

Matching with or without replacement?

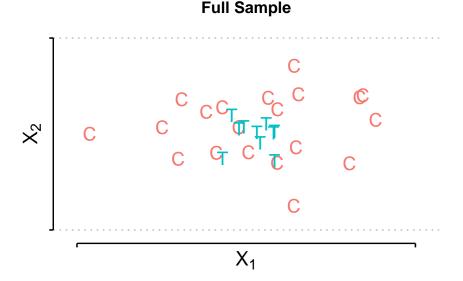
- With replacement: decreased bias because some controls will be good matches for multiple treatment units
- But: replacement makes inference more complicated as matched controls are no longer independent (larger standard errors)

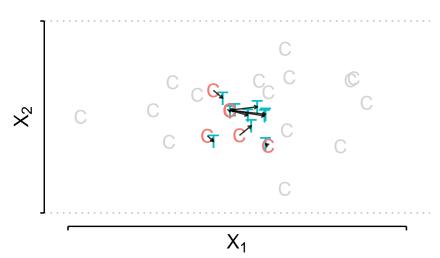
Breaking 'ties'

- ▶ When two controls are equally "close" to a treated unit
- Option 1: Select one at random (but: no unique answer)
- Option 2: Average the tied observed outcomes

Which treatment effect? (ATE/ATC/ATT)

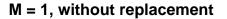
Depends on substantive interest, also on available matches

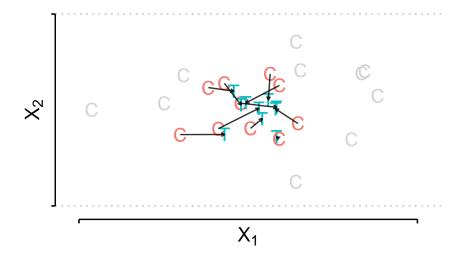


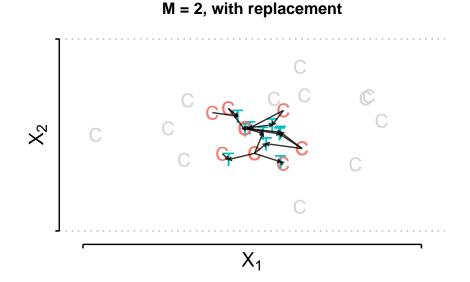


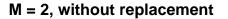
M = 1, with replacement

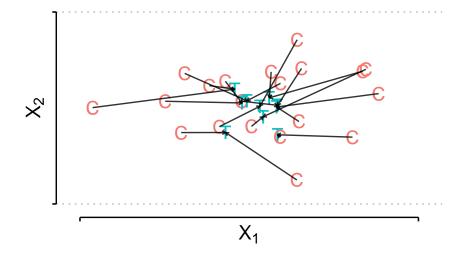
Week 3: Selection on Observables I











Matching: Implementation

Matching in practice

```
library(MatchIt)
```

A matchit object
- method: 1:1 nearest neighbor matching with replacement
- distance: Mahalanobis
- number of obs.: 87 (original), 36 (matched)
- target estimand: ATT
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssate
- covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lw

```
matched.data.att <- match.data(matched.out.att)
matched.data.att[c(1,5,7),c("cname","dur","UN","weights")]</pre>
```

##		cname	dur	UN	weights
##	2	Haiti	143	1	1.0000000
##	9	Panama	169	0	0.8947368
##	12	Paraguay	177	0	1.7894737

weights in treatment group (sum of weights = nobs in treatment group)
summary(matched.data.att\$weights[matched.data.att\$UN==1])

Min. 1st Qu. Median Mean 3rd Qu. Max.
1 1 1 1 1
weights in control group (sum of weights = nobs in control group)
summary(matched.data.att\$weights[matched.data.att\$UN==0])

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.8947 0.8947 0.8947 1.0000 0.8947 1.7895

Week 3: Selection on Observables I

The weights are *key* here, as they ensure that treatment and control group are balanced with respect to the observable confounders.

• With replacement:
$$w_{j(i)} = \sum_{i=1}^{n_{i(j)}} \frac{1}{k_{i(j)}} \times \frac{n_j}{n_i}$$

- *i* are the observations for which *j* is a match
- $k_{i(i)}$ is the total number of matches for i
- n_i is the number of units with the same treatment status as i
- n_j is the number of units with the same treatment status as j
- ▶ Without replacement: $w_{j(i)} = \frac{sp_{j(i)}}{1-sp_{j(i)}} \times \frac{n_j}{n_i}$
 - $sp_{j(i)}$ is the share of treated units in the matched pair or stratum j belongs to
- Sampling weights can also be incorporated by supplying the relevant variable name in the s.weights = option

Weights for control units in this example (ATT, 1:1, with replacement)

Weight for control unit used twice
(1/1 + 1/1)*17/19

```
## [1] 1.789474
```

matched.data.att\$weights[matched.data.att\$cname=="Paraguay"]

[1] 1.789474
Weight for control unit used once
(1/1)*17/19

[1] 0.8947368

matched.data.att\$weights[matched.data.att\$cname=="Panama"]

```
## [1] 0.8947368
```

Week 3: Selection on Observables I

Matching: Implementation

20.84211

After matching, the distribution of X should be the same for treatment and control groups:

- Many papers will present tables of covariate means and p-values before and after matching as evidence of comparability
- Strictly speaking, p-value are not very informative, as they are sensitive to changes in the sample size
- Instead, it is useful to measure the standardized bias of a covariate before and after matching and compare:

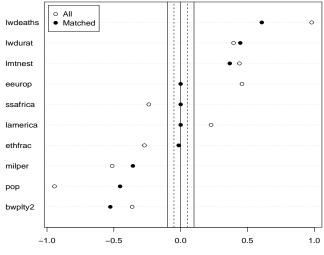
$$\mathsf{bias}_{X_i} = \frac{\bar{X}_t - \bar{X}_c}{\sigma_t}$$

where σ_t is the standard deviation of X in the full treated group.

Week 3: Selection on Observables I

Matching: Implementation

Assessing balance



Standardized Mean Difference

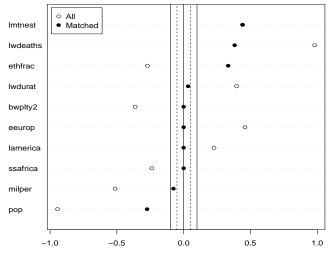
Week 3: Selection on Observables I

Matching: Implementation

```
set.seed(123)
gen.matched.out.att <- matchit(UN ~ lwdeaths + lwdurat + ethfrac + pop +
                             milper + bwplty2 + lmtnest + ssafrica +
                             lamerica + eeurop,
                           data = peace,
                           method = "genetic",
                           distance = "mahalanobis".
                           ratio = 1.
                           replace = T,
                           estimand = "ATT".
                           pop.size=1000)
gen.matched.out.att
## A matchit object
## - method: 1:1 genetic matching with replacement
## - distance: Mahalanobis
## - number of obs.: 87 (original), 33 (matched)
## - target estimand: ATT
## - covariates: lwdeaths, lwdurat, ethfrac, pop, milper, bwplty2, lmtnest, ssa:
```

UN ## 35.36842

Assessing balance



Standardized Mean Difference

Week 3: Selection on Observables I

Matching: Implementation

Consequences of matching decisions

М	Replacement	Distance	ATT
1	Yes	euclidean	43.47
1	No	euclidean	51.90
2	Yes	euclidean	33.12
2	No	euclidean	44.55
1	Yes	mahalanobis	22.98
1	No	mahalanobis	21.04
2	Yes	mahalanobis	32.92
2	No	mahalanobis	37.13
1	Yes	genetic	50.57
1	No	genetic	44.90
2	Yes	genetic	48.59
2	No	genetic	28.50

ATT's from different matches

Implication: Even using the same covariates, different matching criteria can lead to different outcomes! Particularly when N is small.

One approach is to pick the matching procedure that results in the smallest standardized difference in means across all covariates:

М	Replacement	Distance	ATT	Mean absolute bias
1	Yes	euclidean	43.47	0.36
1	No	euclidean	51.9	0.32
2	Yes	euclidean	33.12	0.4
2	No	euclidean	44.55	0.42
1	Yes	mahalanobis	22.98	0.28
1	No	mahalanobis	21.04	0.29
2	Yes	mahalanobis	32.92	0.26
2	No	mahalanobis	37.13	0.34
1	Yes	genetic	50.57	0.13
1	No	genetic	44.9	0.18
2	Yes	genetic	48.59	0.17
2	No	genetic	28.5	0.31

Bias & ATT's from different matches

While extensive time and effort is put into the careful design of randomized experiments, relatively little effort is put into the corresponding 'design' of non-experimental studies. - Stuart, 2010

Best practice is to design without access to outcome variables:

- Look at data without outcome variables; design matching strategy
 - 1 to 1; many to 1; with/without replacement, etc
- 2. Test covariate balance; if unbalanced, go back to 1
- 3. Compare outcomes only after matching is completed.

- By assuming treatments are "as good as random" conditional on X, we can make causal claims from non-experimental data
- How convincing our causal claims are is entirely determined by how plausible this assumption seems in a given context
- ▶ We should condition on all potentially confounding variables
- We should not condition on any post-treatment variables
- Matching and subclassification are two approaches to conditioning