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Motivation

You have all seen tables like this
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Motivation

But what causal quantity (if any) does 𝛽 actually measure?
▶ 𝜏𝐴𝑇 𝐸?
▶ 𝜏𝐴𝑇 𝑇 ?
▶ 𝜏𝐴𝑇 𝐶?
▶ Something else?

Regression is a very widely used tool in the social sciences, and so it
would be good to know what it is actually estimating!
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(Re-)Running example

Do UN interventions Cause Peace?
Gilligan and Sergenti (2008) investigate whether UN peacekeeping
operations have a causal effect on building sustainable peace after
civil wars. They study 87 post-Cold-War conflicts, and evaluate
whether peace lasts longer after conflict in 19 situations in which the
UN had a peacekeeping mission compared to 68 situations where it
did not.

▶ 𝑌𝑖: Peace duration (measured in months)
▶ 𝐷𝑖: 1 if the UN intervened post-conflict, 0 otherwise
▶ 𝑋1𝑖: Region of conflict (categorical)
▶ 𝑋2𝑖: Democracy in the past (binary, based on polity)
▶ 𝑋3𝑖: Ethnic Fractionalization (continuous)

Week 4: Selection on Observables II 4 / 66



This Lecture
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Regression and Causal Effects
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Identification under Selection on Observables

Identification Assumption

1. Potential outcomes independent of 𝐷𝑖 given 𝑋𝑖: (𝑌1𝑖, 𝑌0𝑖)⊥⊥𝐷𝑖|𝑋𝑖
(“selection on observables” or “conditional independence assumption”)

2. 0 < Pr(𝐷 = 1|𝑋) < 1 for all 𝑋 (common support)

Identification Result
Given selection on observables we have

𝐸[𝑌1𝑖 − 𝑌0𝑖|𝑋𝑖] = 𝐸[𝑌1𝑖 − 𝑌0𝑖|𝑋𝑖, 𝐷𝑖 = 1] (CIA)
= 𝐸[𝑌1𝑖|𝑋𝑖, 𝐷𝑖 = 1] − 𝐸[𝑌0𝑖|𝑋𝑖, 𝐷𝑖 = 1]
= 𝐸[𝑌1𝑖|𝑋𝑖, 𝐷𝑖 = 1] − 𝐸[𝑌0𝑖|𝑋𝑖, 𝐷𝑖 = 0] (CIA)
= 𝐸[𝑌𝑖|𝑋𝑖, 𝐷𝑖 = 1] − 𝐸[𝑌𝑖|𝑋𝑖, 𝐷𝑖 = 0]

Implies that for any specific value for 𝑋𝑖, i.e. 𝑥𝑖, we can define the conditional
average treatment effect (𝛿𝑥):

𝛿𝑥 ≡ 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥, 𝐷𝑖 = 1] − 𝐸[𝑌𝑖|𝑋𝑖 = 𝑥, 𝐷𝑖 = 0]
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Identification under Selection on Observables

Identification Assumption

1. Potential outcomes independent of 𝐷𝑖 given 𝑋𝑖: (𝑌1𝑖, 𝑌0𝑖)⊥⊥𝐷𝑖|𝑋𝑖
(“selection on observables” or “conditional independence assumption”)

2. 0 < Pr(𝐷 = 1|𝑋) < 1 for all 𝑋 (common support)

Identification Result
Therefore, under the common support condition and with a discrete 𝑋𝑖, we can
calculate average effects of 𝐷𝑖 on 𝑌𝑖 by taking weighted averages of 𝛿𝑥:

̂𝜏ATE = ∑
𝑥

𝛿𝑥𝑃(𝑋𝑖 = 𝑥)

̂𝜏ATT = ∑
𝑥

𝛿𝑥𝑃(𝑋𝑖 = 𝑥|𝐷𝑖 = 1)

̂𝜏ATC = ∑
𝑥

𝛿𝑥𝑃(𝑋𝑖 = 𝑥|𝐷𝑖 = 0)

i.e. where the weights are the distribution of 𝑋𝑖 in the population ( ̂𝜏ATE),
treatment group ( ̂𝜏ATT), and control group ( ̂𝜏ATC).
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Identification under Selection on Observables

This identification assumption and result is common to all the
methods we will studied last week and will this week.

▶ Subclassification (last week)
▶ Matching (last week)
▶ Regression (this week)

These differ in

a. how we condition on 𝑋𝑖 and
b. how we weight 𝛿𝑥.
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Regression, randomization, and 𝜏𝐴𝑇 𝐸

When we studied randomized experiments, we showed that the
(bi-variate) linear regression model when D is binary

𝐸[𝑌𝑖] = 𝛼 + 𝛽𝐷𝑖

gives coefficient estimates under randomization equal to:

𝐸[𝑌𝑖|𝐷 = 0] = 𝐸[𝑌0𝑖] = 𝛼
𝐸[𝑌𝑖|𝐷 = 1] = 𝐸[𝑌1𝑖] = 𝛼 + 𝛽

and so:

𝐸[𝑌1𝑖] − 𝐸[𝑌0𝑖] = 𝐸[𝑌𝑖|𝐷 = 1] − 𝐸[𝑌𝑖|𝐷 = 0]
= (𝛼 + 𝛽) − (𝛼)
= 𝛽

⇒ Under randomisation: ̂𝛽 = 𝜏𝐴𝑇 𝐸
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Regression and “control”

▶ The typical introduction to regression views motivates it as a
way to ‘control’ for potential confounding variables.

▶ What do we do when we include a control in regression?
• We “hold it constant” while evaluating the relationship between

D and Y

▶ This is also what we do in both subclassification and (exact)
matching:

1. fix the matches/subclasses
2. calculate the mean difference for each match/class
3. average the differences

▶ Regression essentially does the same thing, but does it in a
single step, and the type of averaging is different
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What have we been estimating all this time?

▶ Imagine we want to estimate the causal effect of 𝐷𝑖 on 𝑌𝑖, and
we believe that 𝐷𝑖 is independent of 𝑌0𝑖, 𝑌1𝑖 conditional on 𝑋𝑖

▶ Does the following regression equation identify the causal effect?
In other words, what does 𝛽1 estimate?

𝑌𝑖 = 𝛼 + 𝛽1𝐷𝑖 + 𝛽2𝑋𝑖 + 𝜖𝑖 (Long regression)

▶ Textbook definition:

𝛽1 = 𝐶𝑜𝑣(𝑌𝑖, �̃�𝑖)
𝑉 𝑎𝑟(�̃�𝑖)

where �̃�𝑖 are the residuals from a regression of 𝐷𝑖 on 𝑋𝑖

Week 4: Selection on Observables II Regression and Causal Effects 12 / 66



Regression anatomy

This means that estimating 𝛽1 in the long regression is equivalent to:

1. Regressing 𝐷𝑖 on 𝑋𝑖:

𝐷𝑖 = 𝜋0 + 𝜋1𝑋𝑖 + 𝑒𝑖 (Treatment regression)

2. Calculating the residuals from that regression:

�̃�𝑖 = 𝐷𝑖 − ( ̂𝜋0 + ̂𝜋1𝑋𝑖) (Residual calculation)

3. Regressing 𝑌𝑖 on those residuals (and nothing else):

𝑌𝑖 = 𝛼∗ + 𝛽∗�̃�𝑖 + 𝜖∗ (Residual regression)

→ 𝛽∗ = 𝛽1
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Regression anatomy

Let’s check using the peace data from last week:
# Long regression
coef(lm(dur ~ UN + ethfrac, data= peace))[2]

## UN
## 35.24401
# Regression anatomy
## 1.
treatment_regression <- lm(UN ~ ethfrac, data = peace)
## 2.
treatment_residuals <- resid(treatment_regression)
## 3.
outcome_regression <- lm(dur ~ treatment_residuals, data = peace)

coef(outcome_regression)[2]

## treatment_residuals
## 35.24401
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Regression anatomy

What does this tell us?
1. 𝛽1 measures the relationship between 𝑌𝑖 and the part of 𝐷𝑖 that

is “not explained’ ’ by 𝑋𝑖 (i.e. the residuals)

2. The part of 𝐷𝑖 that is “not explained” by 𝑋𝑖 is assumed to be
independent of potential outcomes i.e. it is “as good as” random
(clear link to CIA)

⇒ Does this mean that 𝛽OLS is estimating 𝜏ATE?
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Does 𝛽OLS estimate 𝜏ATE?

Maybe, but maybe not...
1. We still have to believe that the treatment is as good as

randomly assigned, conditional on covariates
• Conditional independence assumption

• i.e. all the discussion about confounding and post-treatment bias
from last week applies

2. Even if we believe CIA holds, regression does something funny
with the weighting step…
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Regression as a weighted matching estimator

Selection on observables estimators
Last week we showed that both (exact) matching and subclassification
calculate the ATE by taking weighted averages of 𝛿𝑥:

𝜏ATE = ∑
𝑥

𝑃(𝑋𝑖 = 𝑥)𝛿𝑥

i.e. where the weights are the distribution of 𝑋𝑖 in the population (𝜏ATE)
It can be shown (MHE, pp. 74 - 76) that the estimates for 𝛽 from an OLS
regression of 𝑌 on 𝐷 and 𝑋 have a similar form:

𝛽OLS = ∑
𝑥

𝑉 𝑎𝑟[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]𝑃(𝑋𝑖 = 𝑥)
∑𝑥 𝑉 𝑎𝑟[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]𝑃(𝑋𝑖 = 𝑥)𝛿𝑥
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Regression as a weighted matching estimator

𝛽OLS = ∑
𝑥

𝑉 𝑎𝑟[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]𝑃(𝑋𝑖 = 𝑥)
∑𝑥 𝑉 𝑎𝑟[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]𝑃(𝑋𝑖 = 𝑥)𝛿𝑥

Therefore, regression implicitly gives higher weight to:
▶ Subclasses with more units (higher marginal probability, i.e.

𝑃(𝑋𝑖 = 𝑥))
▶ Subclasses where the variance of the treatment is higher (i.e.

𝑉 𝑎𝑟[𝐷𝑖 = 1|𝑋𝑖 = 𝑥])
▶ For a binary treatment, this will be subclasses with more equal

numbers of treatment/control units

⇒ 𝛽1 is an estimator ”for the ATE but with supplemental
conditional variance weighting.” (Morgan and Winship, Ch 6)
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Example (by hand)

𝑤ATE ≡ 𝑃(𝑋𝑖 = 𝑥)

𝑤OLS ≡ 𝑉 𝑎𝑟[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]𝑃(𝑋𝑖 = 𝑥)
∑𝑥 𝑉 𝑎𝑟[𝐷𝑖 = 1|𝑋𝑖 = 𝑥]𝑃(𝑋𝑖 = 𝑥)

Region Dem N 𝛿𝑥 𝑤𝐴𝑇𝐸 𝑤𝑂𝐿𝑆 𝛿𝑥 ⋅ 𝑤𝐴𝑇𝐸 𝛿𝑥 ⋅ 𝑤𝑂𝐿𝑆 Diff

E. Eur 0 (5,5) -29.2 0.14 0.2 -3.95 -5.85 1.9
E. Eur 1 (2,5) 66.8 0.09 0.11 6.32 7.65 -1.33
L. Am 0 (2,1) 144 0.04 0.05 5.84 7.69 -1.85
L. Am 1 (2,7) 5.1 0.12 0.12 0.62 0.64 -0.02
SS. Afr 0 (4,17) 27.9 0.28 0.26 7.92 7.24 0.68
SS. Afr 1 (2,12) 49 0.19 0.14 9.27 6.73 2.54
MeNa 0 (1,7) 123.7 0.11 0.07 13.37 8.67 4.7
MeNa 1 (1,1) 132 0.03 0.04 3.57 5.29 -1.72

𝜏ATE = 42.96
𝛽OLS = 38.06

So OLS gives something a bit like the ATE, but not quite…
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Regression vs Matching vs Subclassification

▶ In practice, regression will often give very similar estimates of
the ATE to matching and subclassification.

▶ The UN peace example, controlling for region and democratic
history:

ATE ATT ATC
Sub-classification 42.96 39.53 44.14
Matching (exact) 39.45 33.05 41.66
Regression 38.07
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Regression as a weighted matching estimator

When will 𝛽OLS be an unbiased estimator for 𝜏ATE?

1. When 𝑃(𝐷𝑖 = 1|𝑋𝑖 = 𝑥) = 𝑃 (𝐷𝑖 = 1)∀𝑥
• treatment probability is the same for everyone
• conditional variance is the same for everyone
• (e.g. in an experiment)

2. When 𝛿𝑥 = 𝜏ATE∀𝑥
• treatment effects are the same for each subclass
• (i.e. effects are homogenous)

Note: We are still assuming conditional independence holds!
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Omitted Variable Bias
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Omitted variable bias

▶ The more typical implicit link made between regression and
causality is via the idea of omitted variables.

▶ Consider two regression models:

Long: 𝑌𝑖 = 𝛼𝑙 + 𝛽𝑙
1𝑋1𝑖 + 𝛽𝑙

2𝑋2𝑖 + 𝜖𝑙

Short: 𝑌𝑖 = 𝛼𝑠 + 𝛽𝑠
1𝑋1𝑖 + 𝜖𝑠

▶ We also have an ‘auxiliary’ regression:

Auxiliary: 𝑋2𝑖 = 𝜋0 + 𝜋1𝑋1𝑖 + 𝜂𝑖

Omitted variable bias
= The bias that results from failing to control for 𝑋2𝑖 in the short

regression.
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𝛽𝑠 vs 𝛽𝑙

▶ If we ignored 𝑋2𝑖 and just estimated the short regression, what
does 𝛽𝑠

1 identify?
▶ With a little bit of work (Mastering ’Metrics, p. 93) we can

see:
𝛽𝑠

1 = 𝛽𝑙
1 + 𝛽𝑙

2𝜋1

• 𝛽𝑙
1 → the coefficient of 𝑋1𝑖 on 𝑌𝑖 in the long regression

• 𝛽𝑙
2 → the coefficient of 𝑋2𝑖 on 𝑌𝑖 in the long regression

• 𝜋1 → the coefficient of 𝑋1𝑖 on 𝑋2𝑖 in the ‘auxiliary’ regression

“Short equals long plus the effect of omitted times the regres-
sion of omitted on included.” (MHE, p. 60)

OVB: 𝛽𝑠
1 − 𝛽𝑙

1 = 𝛽𝑙
2𝜋1

Week 4: Selection on Observables II Omitted Variable Bias 24 / 66



𝛽𝑠 vs 𝛽𝑙 in practice

Is it true that “short equals long plus the effect of omitted times the
regression of omitted on included”?

long <- lm(dur ~ UN + ethfrac,peace)
short <- lm(dur ~ UN,peace)
aux <- lm(ethfrac ~ UN,peace)

# Effect of UN in short regression
coef(short)[2]

## UN
## 40.80263
# Long + effect of omitted*reg of omitted on included
coef(long)[2] + coef(long)[3]*coef(aux)[2]

## UN
## 40.80263

Yes!
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Direction of OVB

OVB: 𝛽𝑠
1 − 𝛽𝑙

1 = 𝛽𝑙
2𝜋1

▶ The difficulty is that we rarely know the values for either 𝛽𝑙
2 or

𝜋1 and so we can’t isolate 𝛽𝑙
1.

▶ The formula does however help to describe the possible
direction of bias:

𝛽𝑙
2 < 0 𝛽𝑙

2 > 0
𝜋1 < 0 𝑂𝑉 𝐵 > 0 𝑂𝑉 𝐵 < 0
𝜋1 > 0 𝑂𝑉 𝐵 < 0 𝑂𝑉 𝐵 > 0

Note also that:
▶ If 𝜋1 = 0, then 𝑂𝑉 𝐵 = 0, and
▶ If 𝛽𝑙

2 = 0, then 𝑂𝑉 𝐵 = 0
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Lessons from the OVB formula

Omitting 𝑋 causes bias in our estimate of ATE if and only if both
the following hold

1. 𝑋 is related to the treatment, conditional on other covariates
• e.g. 𝜋1 ≠ 0
• → no need to control for covariates when 𝐷 is randomly assigned

2. 𝑋 is related to the outcome, conditional on other covariates
• e.g. 𝛽𝑙

2 ≠ 0
• → no need to control for covariates that don’t effect 𝑌
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Should I use regression?

Yes.
▶ Computational simplicity
▶ Many forms, very flexible
▶ Easy statistical inference
▶ Easy to include continuous

treatments

No.
▶ Not as clearly linked to the

CIA
▶ Do we care about the

conditional-variance ATE?

My view: Yes, most of the time. The flexibility and simplicity of
inference are very helpful, and it’s close enough to what we care
about that it’s fine to use, most of the time.
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Non-linearity and Model Dependence
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Non-Linearities

Let’s return to our civil war example. We would like to know the
effect of UN interventions on peace duration:

▶ 𝑌𝑖: Peace duration (dur, measured in months)
▶ 𝐷𝑖: UN intervention (UN, binary)

A colleague suggests that an important confounder might be the
duration of the prior civil war (𝑋𝑖: lwdurat), because:

▶ 𝜋1 ≠ 0 → the length of the previous war is probably associated
with whether the UN intervenes

▶ 𝛽𝑙
2 ≠ 0 → the length of the previous war is probably associated

with how long peace lasts
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War duration and peace duration
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▶ Is civil war duration linearly associated with peace duration?
▶ We might not want to use a straight line to model this

relationship!
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Nonlinear functions of explanatory variables

One way of modelling non-linear relationships is to include polynomial
functions of explanatory variables in our model:

Polynomial models
Polynomial models take the following form:

Linear: 𝐸[𝑌𝑖] = 𝛼 + 𝛽1𝑋1
Quadratic: 𝐸[𝑌𝑖] = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2

1
Cubic: 𝐸[𝑌𝑖] = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2

1 + 𝛽3𝑋3
1

Where 𝑋2
1 is just 𝑋1 ∗ 𝑋1 and 𝑋3

1 is just 𝑋1 ∗ 𝑋1 ∗ 𝑋1, and so on.

In theory we can keep adding polynomial terms to make our model
more flexible, but it gets harder to interpret!
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Polynomial functions of explanatory variables

Why do polynomial terms allow for non-linear relationships?
▶ When we include a quadratic term in the model, we are

essentially including an interaction term
• i.e. the interaction between 𝑋1 and itself (because

𝑋1 ⋅ 𝑋1 = 𝑋2
1)

• This implies that the association between 𝑋1 and 𝑌 will depend
on the specific value of 𝑋1 where we evaluate the relationship

• → the effect of a one-unit change in 𝑋1 will depend on the value
of 𝑋1 we are changing
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Polynomial functions of explanatory variables

Interpreting polynomial coefficients is somewhat difficult:
▶ It is no longer possible to hold constant all other variables

• i.e. If you increase 𝑋1 by one-unit, then you also increase 𝑋2
1

• We can still say something by looking at the sign of 𝛽𝑋2

▶ In general it is much more straightforward to produce fitted
value plots to describe the relationship between 𝑋 and 𝑌
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Polynomial functions of explanatory variables

For the model 𝐸[𝑌 ] = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2
1 :

β1> 0 & β2< 0

X

Y
β1< 0 & β2> 0

X

Y

β1> 0 & β2> 0

X

Y

β1< 0 & β2< 0

X

Y
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Polynomial regression in R

In R we can include polynomial transformation of our 𝑋 variables
directly into the model formula:

linear_model <- lm(dur ~ lwdurat, data = peace)
quadratic_model <- lm(dur ~ lwdurat + I(lwdurat^2),

data = peace)
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Polynomial regression output

Regression output

(1) (2)
𝑙𝑤𝑑𝑢𝑟𝑎𝑡 0.35∗∗∗ (0.08) 1.83∗∗∗ (0.33)
𝑙𝑤𝑑𝑢𝑟𝑎𝑡2 −0.01∗∗∗ (0.002)
Intercept 37.44∗∗∗ (6.33) 17.69∗∗ (7.08)
Observations 87 87
R2 0.17 0.34

The coefficients are hard to interpret, but we can see that the
quadratic term is significant. What does this mean?

▶ The null hypothesis is that the relationship between X and Y is
linear

▶ We can reject this null: there is evidence of non-linearity here
▶ We should also note that the model fit improves

Week 4: Selection on Observables II Non-linearity and Model Dependence 37 / 66



Polynomial regression visualization
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Why should we care about non-linearity?

There are 2 broad motivations for thinking about non-linearity:

1. Not all relationships are linear!
• Regression is a model that “by default” estimates linear

relationships

• Sometimes, like here, linearity is not a good approximation of the
true relationship.

• In these cases, we may want to specify a more flexible model to
capture more of reality

2. Mis-specifying a the non-linear relationship between a control
variable and the outcome can lead to biased treatment effects

• This is known as model dependence
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Why should we care about non-linearity?
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Non-linearity and model dependence

When using regression as a tool to estimate treatment effects, we
also therefore need to decide how to control for confounders:

linear_control <- lm(dur ~ UN + lwdurat, data = peace)
quadratic_control <- lm(dur ~ UN + lwdurat + I(lwdurat^2),

data = peace)

(1) (2)
UN 37.46∗∗∗ (10.83) 24.76∗∗ (10.59)
𝑙𝑤𝑑𝑢𝑟𝑎𝑡 0.33∗∗∗ (0.08) 1.59∗∗∗ (0.34)
𝑙𝑤𝑑𝑢𝑟𝑎𝑡2 −0.01∗∗∗ (0.002)
Intercept 29.83∗∗∗ (6.35) 15.86∗∗ (6.94)
Observations 87 87
R2 0.27 0.38

Note: The UN coefficient is very different in the two models!
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Regression, matching and model dependence

Definition
Model dependence exists when our estimates depend on specific
modeling assumptions and where different specifications can yield
very different causal inferences.

What can we do about this problem?
▶ One common approach is to use matching as a preprocessing

tool to reduce model dependence (see Ho et. al, 2007).
▶ This is exactly what we have been doing with the MatchIt

package!
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Regression and model dependence
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▶ Linear control for X: ̂𝛽1 > 0
▶ Quadratic control for X: ̂𝛽1 < 0
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Regression, matching and model dependence
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▶ Post-matching: ̂𝛽linear ≈ ̂𝛽quadratic ≈ 0
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Regression, matching and model dependence

Using matching to ensure that common support holds can make our
parametric estimates less model dependent.

Implications:
▶ Estimates will be less sensitive to small changes in modelling

choices that are particularly common in regression analysis.
▶ We will frequently lack common support for both treatment and

control observations, which we then discard.
▶ This has consequences for the interpretation of estimated

treatment effects.
• Our estimates will be ̂𝜏𝐴𝑇 𝐸 or ̂𝜏𝐴𝑇 𝑇 or ̂𝜏𝐴𝑇 𝐶 only for those units

for which the common support assumption holds
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Model dependence in matching

▶ Matching is not free from model dependence either!
▶ We saw last week how small matching decisions made quite a bit

of difference
▶ The results from week’s seminar question 2.3 illustrate this too:

• Almost all included age, married, black, hisp
• Then either one or two of no degree, educcat, or educ
• The big difference is due to re74 and re75
• Most did 1:1, with replacement and mahalanobis distance - but

these choices made less difference than the earnings variables
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The Curse of Dimensionality
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Curse of dimensionality

▶ Matching, regression, and subclassification all rely on the idea
that we can make comparisons between treatment and control
units that have otherwise similar 𝑋 variables.

▶ Often, we will be able to come up with many possible
confounding factors that we might want to condition upon.

Problem: The curse of dimensionality
The total quantity of data ‘near’ any given point in 𝑋 falls off very
quickly when the dimensionality of 𝑋 increases.
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Curse of dimensionality
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Curse of dimensionality

▶ The average distance from the nearest observation increases very
fast as we add explanatory variables

• I.e. the data becomes ‘sparse’ in 𝑋
▶ Increasing the sample size helps, but not much!

• To maintain the same average distance to nearest observations
when going from 1 to 2 explanatory variables often requires many
thousands more observations

• To get the same average distance to the nearest observation that
is acheived for 1 explanatory variable with 32 observations
requires over 1000 observations with 2 explanatory variables

▶ Implication: Adding more covariates may make matches more
“appropriate”, but also makes them far harder to make.
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Implications of the curse of dimensionality

▶ Matching:
• Exact matching: very few exact matches

• Nearest neighbour: if more distant matches are less reliable,
adding 𝑋’s might make ‘nearest’ matches poor control choices

▶ Subclassification:
• Many empty cells, or cells with only treatment/control units

▶ Regression:
• More reliance on model, and thus increased threat of model

dependent results

Generally: As dimensionality increases, restricting to observations
with reasonable matches will lead to unrepresentative estimates

Week 4: Selection on Observables II The Curse of Dimensionality 51 / 66



Non-standard Standard Errors
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Errors and residuals, re-cap

Recall the linear regression model:

𝑌𝑖 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜖𝑖

Most regression software by default makes two restrictive
assumptions about the error term, 𝜖:

1. Errors are independent and identically distributed for each
observation (iid)

2. Errors have equal variance for all values of 𝑋
(homoskedasticity)

When either of these things fail, our standard errors will be wrong.
Here we will discuss two potential failures of these assumptions.
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Homoskedasticity vs Heteroskedasticity
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Homoskedasticity vs Heteroskedasticity

Heteroskedastic errors
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Implications of heteroskedasticity

The good news:
▶ Whether the errors are homoskedastic or heteroskedastic, ̂𝛽 is

both unbiased and consistent

The bad news:
▶ If the homoskedasticity assumption is violated:

• 𝑡-statistics do not have a standard normal distribution
• Conventional standard errors will be too small
• Hypothesis tests will reject the null hypothesis too often
• Confidence intervals will be too narrow

▶ Heteroskedasticity can lead to standard errors that are too small
or too large.

• But we generally care less about overestimating the standard
error.
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Heteroskedasticity in t-tests and regression

Let’s consider an experiment where the variance of the outcome is
different in the treatment and control groups:
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Heteroskedasticity in t-tests and regression

By default, the lm() function in R assumes homoskedastic errors:
ols_mod <- lm(y ~ x)
summary(ols_mod)

...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2072 0.1913 1.083 0.279
## x 0.4462 0.2209 2.021 0.044 *
...

But the t.test() function does not:
t.test(y[x==1], y[x==0])

...
## data: y[x == 1] and y[x == 0]
## t = 1.2896, df = 104.82, p-value = 0.2
## alternative hypothesis: true difference in means is not equal to 0
...

Note: The regression provides the wrong conclusion!
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Heteroskedasticity correction in R

library(lmtest)
library(estimatr)

# Use lm_robsust from the estimatr package to tell R to calculate
# heteroskedasticity-robust SEs ("HC3")
robust_ols_mod <- lm_robust(y ~ x, se_type = "HC3")
coeftest(robust_ols_mod)

...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.20715 0.34281 0.6043 0.5460
## x 0.44624 0.34774 1.2833 0.2001
...

Note: The standard error, t-statistic and p-value are now correct.
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Clustered data

Another way in which normal standard errors can be wrong is when
we have clustered data.

Examples:
▶ An experiment where villages are selected into treatment/control

but the outcome is measured at the household level
▶ An observational study where we care about the effects of class

size but we measure individual student outcomes

Key: Always ask yourself: at what level was the treatment assigned?
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Clustering example

The STAR Experiment
The STAR project was a randomized experiment designed to test the
causal effects of class sizes on learning. Classes in Tennessee schools
were randomly assigned either to regular sized classes (22-25
students, the control group) or to smaller classes (15-17 students,
the treatment group). We observe student outcomes at the
individual level.

▶ Y (Dependent variable): grade of student on a standardised
math test (0 to 100)

▶ X (Independent variable): size of class (TRUE = student in small
class, FALSE = student in regular sized class)
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Why does clustering affect standard errors?

Imagine we have a regression like:

𝑌𝑖(𝑔) = 𝛼 + 𝛽1𝑋𝑔 + 𝜖𝑖(𝑔)

where 𝑋𝑔 is a covariate that only varies at the group level.

▶ Normal standard errors are calculated assuming that errors (𝜖)
are uncorrelated across units

▶ This is clearly not the case here!
• Students in the same class will have similar grades because of

other factors (teacher quality; time of day; etc)

▶ When errors are correlated within groups, the normal standard
errors will be too small

▶ This will be particularly bad when the number of groups is small

Week 4: Selection on Observables II Non-standard Standard Errors 62 / 66



STAR example in R

Let’s run the STAR regression:
linear_model <- lm(grade ~ small_class, data = star)
summary(linear_model)

...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 45.8255 0.1869 245.20 < 2e-16 ***
## small_class 2.2234 0.3410 6.52 7.61e-11 ***
...

▶ The regression coefficient is an unbiased estimate of the ATE of
small classes. Why? Randomisation!

▶ But, although the errors are almost surely correlated within class,
we are treating them as independent, meaning that they are
likely too small.
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Cluster-robust standard errors in R

One solution to this problem is to use cluster-robust standard errors.
linear_model_cl <- lm_robust(grade ~ small_class, data = star,

clusters = schidkn,
se_type = "CR2") # the default

coeftest(linear_model_cl)

...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 45.82546 0.71378 64.2011 < 2.2e-16 ***
## small_class 2.22339 0.61902 3.5918 0.0003311 ***
...

Note: Here, the cluster-robust errors are twice as large as the regular
standard errors, but the conclusion remains the same. This will not
always be the case…
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Cluster-robust standard errors

▶ Normal SEs are partly determined by the sample size, 𝑁
• As 𝑁 ↑, 𝑆𝐸(𝛽) ↓

▶ Clustered SEs are more sensitive to the number of clusters, 𝐺,
than they are to 𝑁 .

• As 𝐺 ↑, 𝑆𝐸(𝛽)Clustered ↓

Implications:

1. Collecting more data only helps if you are collecting from new
groups

2. 𝑆𝐸(𝛽)Clustered will perform poorly when the number of clusters
is small (< 30).
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Conclusion

▶ Matching or Regression (or Subclassification)?
• My view: Differences between estimation strategies are far less

important than the data you have collected

▶ Simply, for selection on observables to hold, you need good
observables!

▶ Don’t spend ages trying to persuade us that your new matching
estimator is really great. Instead:

• Think hard about which variables are crucial to condition upon
• Collect better data relevant to these confounders
• Find settings where there are very good covariates (RDD is

going to be an example of this)
• Find setting where confounders are less important (experiments,

natural experiments, diff-in-diff etc)
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