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Motivation

Does health insurance improve health outcomes? (Revisited)

Is there a causal effect of health insurance on actual levels of
health? In week 2, we used this example to show that
randomized experiments represent a “gold standard” for causal
inference, and that drawing causal conclusions from observational
data is complicated by “confounding” relationships.

• Y (Dependent variable): health
• “Would you say your health in general is excellent (5), very

good (4), good (3), fair (2), or poor (1)?”

• X (Independent variable): insured
• “Do you have health insurance?” TRUE = Insured, FALSE =

Not insured



Data sources

Observational data

National Health Interview Survey (NHIS, N = 19996): an annual
survey of the US population that asks questions about health and
health insurance.

Experimental data

RAND Health Insurance Experiment (RAND, N = 2702): an
experiment conducted between 1974 and 1982 in the US. In this
experiment, researchers randomly allocated individuals to receive
health insurance.

In both cases we also have information from some of the other
questions on the survey (gender, income, race, etc).
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Regression and randomized experiments



Randomization and regression

• Revision (1): The difference in means provides an unbiased
estimate of the causal effect when our treatment is randomly
assigned to units (week 2).

• Revision (2): The coefficient associated with a binary variable
in a simple linear regression is equal to the difference in means
estimate (week 4).

• Implication: When treatment is randomized, the linear
regression coefficient provides an unbiased estimate of the
causal effect!
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Regression and randomized experiments (example)

Let’s calculate the difference in means using the experimental data:
## Mean health level for insured and uninsured individuals
mean_health_insured <- mean(rand$health[rand$insured == TRUE])
mean_health_uninsured <- mean(rand$health[rand$insured == FALSE])
mean_health_insured - mean_health_uninsured

## [1] -0.01895885

## Regression of health on insurance status
lm(health ~ insured, rand)

...
## (Intercept) insuredTRUE
## 3.40702 -0.01896
...

Implication: The causal effect of insurance on health is very close
to zero.
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Benefits of using regression to analyse experiments

1. Heterogeneous treatment effects
• Do the effects of the treatment vary by type of unit?
• You can already do this: interactions!

2. Non-binary treatments
• Is the treatment you care about continuous? Or categorical?
• You can already do this: factor/continuous variables in

regression!

3. Increasing the “precision” of our estimates
• Control for other factors that determine the outcome can make

the estimates of the treatment effects more precise
• We will cover this in future weeks!
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Heterogeneous treatment effects

In week 2, we were concerned with estimating the average
treatment effect

• What is the average difference in potential outcomes under
treatment and control across all units in our sample?

However, we may care about whether the treatment has different
effects for different types of individuals.

• Does insurance status matter more for low income than high
income individuals?

Fortunately, we can use interactions between explanatory
variables to answer this.
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Interactions (revision)

• An interaction exists when the relationship between one
explanatory variable (𝑋1) and our dependent variable (𝑌 )
depends on the value of another explanatory variable (𝑋2)

• We can add interactions into the linear regression model by
including the product of two explanatory variables in our
model:

𝑌𝑖 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3(𝑋1 ∗ 𝑋2) + 𝜖𝑖

• We can interpret interactions by calculating the fitted values
for various cases of interest



Heterogeneous treatment effects

heterogeneous_effects_model <- lm(health ~ insured * income, rand)
summary(heterogeneous_effects_model)

...
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.195337 0.072245 44.229 < 2e-16 ***
## insuredTRUE 0.098969 0.079757 1.241 0.214754
## income 0.006551 0.001963 3.338 0.000855 ***
## insuredTRUE:income -0.003536 0.002181 -1.621 0.105126
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.767 on 2698 degrees of freedom
## Multiple R-squared: 0.007878, Adjusted R-squared: 0.006775
## F-statistic: 7.141 on 3 and 2698 DF, p-value: 8.932e-05
...



Heterogeneous treatment effects

# Treatment effect for low-income individuals
predict(heterogeneous_effects_model,

newdata = data.frame(insured = c(not_insured = F, insured = T),
income = 10)) # income in thousands

## not_insured insured
## 3.26085 3.32446

# Treatment effect for high-income individuals
predict(heterogeneous_effects_model,

newdata = data.frame(insured = c(not_insured = F, insured = T),
income = 40)) # income in thousands

## not_insured insured
## 3.457387 3.414922

Implication: Some suggestion that the treatment slightly increases
reported health for low-income individuals, but not for high-income
individuals.
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Heterogeneous treatment effects

# Treatment effect for low-income individuals
predict(heterogeneous_effects_model,
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## not_insured insured
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# Treatment effect for high-income individuals
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## not_insured insured
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Non-binary treatments

We have generally been focused on treatments that are binary –
i.e. where units are either assigned to treatment or to control.

However, there are many examples where our (randomly assigned)
treatment may not be binary. For instance:

1. Effect of different spending levels on budget approval
(continuous)

2. Effect of types of campaign materials on voter turnout
(categorical)

In our healthcare example, the treatment in the experiment was
actually categorical.

http://www.jackblumenau.com/papers/spending_experiment.pdf
https://www.cambridge.org/core/journals/american-political-science-review/article/social-pressure-and-voter-turnout-evidence-from-a-largescale-field-experiment/11E84AF4C0B7FBD1D20C855972C2C3EB


Non-binary treatments

table(rand$insured,rand$plantype)

##
## Catastrophic Coinsurance Deductible Free
## FALSE 491 0 0 0
## TRUE 0 727 593 891

• “Catastrophic” – Individuals pay for all health costs
• “Coinsurance” – Individuals pay 25-50% of costs
• “Deductible” – Costs capped at $150
• “Free” – Individuals pay nothing

Question: Are the causal effects the same for all three treatment
conditions?



Non-binary treatments (factor)

categorical_treatment_model <- lm(health ~ plantype, rand)
summary(categorical_treatment_model)

...
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.407016 0.034684 98.231 <2e-16 ***
## plantypeCoinsurance 0.044112 0.044893 0.983 0.3259
## plantypeDeductible -0.009908 0.046893 -0.211 0.8327
## plantypeFree -0.076444 0.043196 -1.770 0.0769 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7685 on 2698 degrees of freedom
## Multiple R-squared: 0.003769, Adjusted R-squared: 0.002661
## F-statistic: 3.403 on 3 and 2698 DF, p-value: 0.01701
...



Non-binary treatments (factor)

# Treatment effects for different plans
predict(

categorical_treatment_model,
newdata = data.frame(

plantype = c("Catastrophic" = "Catastrophic",
"Coinsurance" = "Coinsurance",
"Deductible" = "Deductible",
"Free" = "Free")))

## Catastrophic Coinsurance Deductible Free
## 3.407016 3.451128 3.397108 3.330572

Implication: The average outcome is similar for all three treatment
groups, which are similar to the control group.
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Randomization and regression

Using regression to analyse the RAND health experiment, we have
seen that:

1. The average causal effect of health insurance on health
outcomes is very small

2. The causal effect is only positive for low income individuals,
though it is still small

3. There is little difference in the estimated causal effects of
different types of insurance plans

Sidenote: Despite these modest effects, the RAND experiment showed much
larger effects in terms of use of health care services. Self-reported health may
not be the most important health care outcome!

https://www.rand.org/pubs/commercial_books/CB199.html
https://www.rand.org/pubs/commercial_books/CB199.html


Regression and observational data



What happens when we don’t have experimental data?

So far, we have focused on how we can use regression to also
analyse experimental data.

But most data we have in political science is not experimental, it is
observational.

Regression also provides a framework for controlling for
confounding factors that arise in observational data.



Confounding recap

Confounding

Confounding exists when there are differences other than the
treatment between treatment and control groups (i.e.,
observations taking on different values of our independent
variable of interest), and which may affect the outcome.

Imagine that we observe a positive (bivariate) relationship between
the following variables:

• National chocolate consumption → Number of Nobel prizes

Question: Can you think of any potentially confounding variables?
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Multiple Linear Regression & OVB

In the context of regression, failing to adjust for potentially
confounding factors is usually known as omitted variable bias
(OVB).

• OVB occurs when two conditions are met:
1. When our X variable (𝑋1) is correlated with another X

variable (𝑋2) that has not been included in the analysis
2. When the omitted variable (𝑋2) is also correlated with our Y

variable

• We call an omitted variable that leads to such bias a
confounding variable

Intuition: The association that we observe between 𝑋1 and 𝑌
might be more meaningfully attributed to 𝑋2
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Multiple Linear Regression & OVB

If OVB is present, and we do nothing to address it, then our
estimate of 𝛽1 will be biased (wrong)

𝑐𝑜𝑟(𝑋1, 𝑋2) > 0 𝑐𝑜𝑟(𝑋1, 𝑋2) < 0
𝑐𝑜𝑟(𝑋2, 𝑌 ) > 0 ̂𝛽1 too big ̂𝛽1 too small

𝑐𝑜𝑟(𝑋2, 𝑌 ) < 0 ̂𝛽1 too small ̂𝛽1 too big

• 𝑐𝑜𝑟(𝑋1, 𝑋2) is the correlation between 𝑋1 and 𝑋2
• 𝑐𝑜𝑟(𝑋2, 𝑌 ) is the correlation between 𝑋2 and 𝑌

Implication: Depending on the relationship that 𝑋2 has with 𝑋1
and 𝑌 , ̂𝛽1 could be either too big or too small!
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1. The independent variable is correlated with other factors
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2. The dependent variable is also correlated with those factors
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Controlling for confounders of health insurance

Omitted variable bias is a problem when…

1. The independent variable is correlated with other factors

and

2. The dependent variable is also correlated with those factors

Let’s look into whether confounding could be an issue in the NHIS
data set:

• Is the independent variable correlated with other factors?

insured health age female years_educ income

Insured 3.9 43.3 50.2 14.1 101.3
Uninsured 3.6 40.9 49.0 11.3 42.9
Difference 0.3 2.4 1.2 2.9 58.4



Controlling for confounders of health insurance

Omitted variable bias is a problem when…

1. The independent variable is correlated with other factors

and

2. The dependent variable is also correlated with those factors

Let’s look into whether confounding could be an issue in the NHIS
data set:

• Is the dependent variable correlated with those factors?

age female years_educ income

𝑐𝑜𝑟𝑟(health,X) -0.162 -0.001 0.255 0.269



Controlling for confounders of health insurance

Omitted variable bias is a problem when…

1. The independent variable is correlated with other factors

and

2. The dependent variable is also correlated with those factors

Both conditions are met in this example.

Question: What can we do about it?



“Controlling for” confounders

One strategy for dealing with confounding is to compare average
outcomes between treatment and control units while controlling
for potential confounders.

Question: How can we control for potential confounders?

Answer 1: By using subclassification

Answer 2: By using regression
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Subclassification

What is subclassification and when can we use it?

• Cross-sectional data: One observation per unit
(i.e. individuals, countries, firms, etc), many units

• Approach: Compare average outcomes between treatment and
control units, “controlling” for potential confounders

• Assumption required: No unmeasured confounding between
treated and control units

• Example: Insurance status is imbalanced with respect to
income. We can control for income by using
subclassification: calculating the differences between
treatment and control within levels of a confounding variable
(e.g., income levels).



Subclassification (example)

Our observational difference-in-means estimate is relatively large:

mean(nhis$health[nhis$insured == T]) -
mean(nhis$health[nhis$insured == F])

## [1] 0.3262003

But insurance status is imbalanced with respect to income:

mean(nhis$income[nhis$insured == T]) -
mean(nhis$income[nhis$insured == F])

## [1] 58.42287

How can we control for income?



Subclassification (example)

Subclassification: calculate differences between treatment and
control within levels of a confounding variable.

Imagine that we have just 3 levels of income (low, mid and high).
Calculate the average health of insured and uninsured for each
level (using the NHIS data set):

insured_low_mean <- mean(nhis$health[nhis$insured == T &
nhis$income_cat == "Low"])

uninsured_low_mean <- mean(nhis$health[nhis$insured == F &
nhis$income_cat == "Low"])

insured_low_mean - uninsured_low_mean

## [1] 0.1010293



Subclassification

Subclassification: calculate differences between treatment and
control within levels of a confounding variable.

Imagine that we have just 3 levels of income (low, mid and high).
Calculate the average health of insured and uninsured for each
level (using the NHIS data set):

insured_mid_mean <- mean(nhis$health[nhis$insured == T &
nhis$income_cat == "Mid"])

uninsured_mid_mean <- mean(nhis$health[nhis$insured == F &
nhis$income_cat == "Mid"])

insured_mid_mean - uninsured_mid_mean

## [1] 0.04954519



Subclassification

Subclassification: calculate differences between treatment and
control within levels of a confounding variable.

Imagine that we have just 3 levels of income (low, mid and high).
Calculate the average health of insured and uninsured for each
level (using the NHIS data set):

insured_high_mean <- mean(nhis$health[nhis$insured == T &
nhis$income_cat == "High"])

uninsured_high_mean <- mean(nhis$health[nhis$insured == F &
nhis$income_cat == "High"])

insured_high_mean - uninsured_high_mean

## [1] 0.1542666



Subclassification

insured_low_mean - uninsured_low_mean

## [1] 0.1010293

insured_mid_mean - uninsured_mid_mean

## [1] 0.04954519

insured_high_mean - uninsured_high_mean

## [1] 0.1542666

Consequence: Once we control for income, the effects of insurance
on health are much smaller than in the naive difference-in-means
comparison.

mean(nhis$health[nhis$insured == T]) -
mean(nhis$health[nhis$insured == F])

## [1] 0.3262003



Subclassification

insured_low_mean - uninsured_low_mean

## [1] 0.1010293

insured_mid_mean - uninsured_mid_mean

## [1] 0.04954519

insured_high_mean - uninsured_high_mean

## [1] 0.1542666

Consequence: Once we control for income, the effects of insurance
on health are much smaller than in the naive difference-in-means
comparison.

mean(nhis$health[nhis$insured == T]) -
mean(nhis$health[nhis$insured == F])

## [1] 0.3262003



“Controlling for” confounders with regression

Regression also allows us to control for other variables, and is more
flexible than subclassification:

• If we believe that the association between 𝑋1 and 𝑌 is
confounded by 𝑋2, and we are able to measure 𝑋2, we can
control for 𝑋2

• We can hold the value of 𝑋2 constant while estimating the
association between 𝑋1 and 𝑌

• If we believe that the association between 𝑋1 and 𝑌 is
confounded by other variables, we can also control for those
variables!

Intuition: The idea is the same as for subclassification, but
regression allows us to calculate differences between treatment and
control while holding multiple variables constant.
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Controlling for confounders of health insurance

# Naive model
nhis_model <- lm(health ~ insured, data = nhis)

# Model controlling for income only
nhis_model_with_income <- lm(health ~ insured + income,

data = nhis)

# Model controlling for many variables
nhis_model_with_covariates <- lm(health ~ insured + income +

age + female +
years_educ,

data = nhis)



Controlling for confounders of health insurance

health
(1) (2) (3)

insured 0.33 0.06 0.02
income 0.004 0.004
age −0.02
female −0.05
years_educ 0.05
Constant 3.62 3.43 3.80
Observations 19,996 19,996 19,996
R2 0.02 0.07 0.13

• In this example, the ̂𝛽 coefficient on insured decreases when
controlling for other variables

• ̂𝛽insured in model 3 is much closer to the experimental estimate
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female −0.05
years_educ 0.05
Constant 3.62 3.43 3.80
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R2 0.02 0.07 0.13

Question: Does ̂𝛽insured represent the causal effect of insurance on
self-reported health?



Controlling for confounders of health insurance

health
(1) (2) (3)

insured 0.33 0.06 0.02
income 0.004 0.004
age −0.02
female −0.05
years_educ 0.05
Constant 3.62 3.43 3.80
Observations 19,996 19,996 19,996
R2 0.02 0.07 0.13

Question: Does ̂𝛽insured represent the causal effect of insurance on
self-reported health?
Answer: Only if we are willing to assume that we are controlling for
all confounders/omitted variables.



Task

Is the assumption that you controlled for all possible confounding
variables plausible in the case of the multiple linear regression
using (cross-sectional) NHIS data?

Speak to your neighbour about this question and which variables
you would should control for in your regression, if you wanted to
make the case that we can use multiple linear regression to
estimate the causal effect of health insurance on self-reported
health using the NHIS data set.



Controlling for confounders of health insurance

health
(1) (2) (3)

insured 0.33 0.06 0.02
income 0.004 0.004
age −0.02
female −0.05
years_educ 0.05
Constant 3.62 3.43 3.80
Observations 19,996 19,996 19,996
R2 0.02 0.07 0.13

Example: One potential missing control variable here is baseline
health levels. People who were less healthy in the past may be less
healthy now and more likely to take out insurance!



Controlling for confounders of health insurance (experimental
data)

Note that the same does not apply with experimental data!

health

(1) (2) (3)

insured −0.02 −0.01 −0.01
income 0.004 0.003
age −0.01
female −0.03
years_educ 0.05
Constant 3.41 3.29 3.19

Observations 2,702 2,702 2,702
R2 0.0001 0.01 0.09

• The coefficient for insured is
nearly the same in models 1, 2
and 3. Why?

• OVB is present when omitted
variables are correlated with
both independent and
dependent variables.

• Insurance status is randomly
assigned, so cannot be
correlated with other factors.
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Controlling for confounders with regression

Confounders, control, and causal inference

In order to claim that estimates based on multiple linear
regressions using observational data represent causal differences,
you have to argue that you have controlled for all possible
confounding variables.

This is difficult because you may not:

• know what all the confounders are
• be able to measure some confounders
• be able to observe some confounders



Selection on observables

Where the assumption that you can control for all possible
confounding variables is plausible, you can use multiple linear
regression to estimate causal effects from observational data.

• We can refer to such cases as cases where “selection on
observables” is possible

• That is, because in these cases, the treatment and control
groups only differ by a set of observable characteristics.



Conclusion



Regression and causality

When can we interpret a regression coefficient causally?

1. Randomized experiments
• Coefficient on a binary treatment is estimate of the average

treatment effect

2. Observational studies
• Confounders: variables that cause both the treatment and the

outcome
• We can only interpret coefficients causally when we have

controlled for all confounders as additional X variables
(cross-sectional design, selection on observables, “controlling
for all potential confounders”)

• or when we employ alternative designs, as we’ll see next week
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Seminar

In seminars this week, you will learn how to …

1. …implement more regressions.
2. …argue about whether regression coefficients are good

estimates of causal effects.
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