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Motivation

The Motherhood Wage Penalty
Do women who have children tend to earn less? The data for this
exercise came from the National Longitudinal Survey of Youth in
the US which samples young people from the population to find
out about their employment situations. We will use the data
from this example to illustrate the importance of sampling in
quantitative analysis.

• Unit of analysis: 2261 women aged between 19 and 30
• Dependent variable (Y): Hourly wage (measured in $s)
• Independent variable (X): 1 if the woman has at least 1 child,

0 otherwise
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Difference in means recap

Let’s calculate the difference in mean wages between mothers and
non-mothers:

wage_mothers <- mean(motherhood$wage[motherhood$isMother == 1])
wage_not_mothers <- mean(motherhood$wage[motherhood$isMother == 0])
wage_mothers - wage_not_mothers

## [1] -0.4889398

Question: Is this a meaningful difference?
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Is this a “meaningful” difference?

Two distinct approaches to answering this question:

1. Substantive answer: Consider the units in which it is
measured.

• Wage is measured in $ per hour, so mothers earn about 50
cents per hour less than non-mothers. Is that an important
difference?

2. Statistical answer: Consider how likely it is that the difference
observed in the sample is close to that which exists in the
population.

• Did we gather enough data to be confident that what we
observed in the sample also applies to the population?

We must consider both criteria when interpreting quantitative
results.
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Lecture Outline

Sampling and sampling distributions

The Central Limit Theorem

Confidence intervals

Conclusion
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Sampling and sampling distributions



Samples and sampling variation

Our motherhood data, like much data in political sciences, comes
from a sample.

• simple random sample → 𝑛 units are drawn at random from
a population and each unit is equally likely to be drawn.

• probability sample → 𝑛 units are drawn at random from a
population and each unit has a predefined probability of being
drawn.

Random sampling is useful because it helps to ensure that sample
units are, on average, representative of the broader population of
units.
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Sampling variation

Samples help us to overcome the problem that it is often
impossible to observe the entire population.

However, this comes at a cost:

• When you have a sample, quantities that you calculate using
the sample will not exactly match the value of those
quantities for the entire population.
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Functions of samples

Most statistical methods involve calculating some quantity for a
sample of data. E.g.

• Mean, median, mode
• The difference in means
• A 𝛽 coefficient of a regression

However, any “quantity of interest” like these will also vary each
time you change the sample.

Implication: We need to know something about how much our
quantities of interest vary across multiple samples if we want to
understand how much a single sample tells us about the population
we care about.
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Population vs samples example

The treatment group is blue, and the control group is orange.

10 2 4 6 2 3 −2−110−1 4 5 7 7 5
5 −2 5 5 2 0 2 −1−1 6 7 −4−2−1 3

−2 2 3 0 1 −3 5 9 1 −3 0 3 5 9 −3
3 2 −1−1−3 2 4 −2 1 7 −4 7 −2−3 1
0 4 1 3 1 2 6 7 4 3 8 0 3 1 8
2 1 4 3 −1 2 4 −4 0 0 −1−2 2 0 0
5 2 6 6 4 2 2 2 10−1 7 1 −1 8 3

−5 1 2 −4 8 3 0 1 2 0 −1 3 3 6 4
1 1 5 0 3 2 3 4 −2 2 2 −4 2 7 −3
6 3 7 0 3 1 0 2 5 3 1 6 0 5 −3
3 0 1 −212−1 2 3 −2 2 3 5 −4 0 1
2 −1 4 1 −2 4 0 3 7 3 0 2 3 −1−3
1 3 −2 5 6 3 6 3 −1 2 8 4 2 2 3
3 6 3 1 −5 1 2 2 3 3 −5 7 4 2 5
2 −3−2 4 7 −1 2 7 0 7 −1 0 2 1 3 Population values:

• ̄𝑌𝑋=0 = 1.64
• ̄𝑌𝑋=1 = 2.59
• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 = 0.95
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Sample values:
• ̄𝑌𝑋=0 = 0.58
• ̄𝑌𝑋=1 = 3.11
• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 = 2.53

9 / 46



Population vs samples example

The treatment group is blue, and the control group is orange.
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−2 2 3 0 1 −3 5 9 1 −3 0 3 5 9 −3
3 2 −1−1−3 2 4 −2 1 7 −4 7 −2−3 1
0 4 1 3 1 2 6 7 4 3 8 0 3 1 8
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• ̄𝑌𝑋=0 = 1.64
• ̄𝑌𝑋=1 = 2.59
• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 = 0.95

Sample values:
• ̄𝑌𝑋=0 = 2.86
• ̄𝑌𝑋=1 = 1.69
• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 = −1.17
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Population vs samples example

The treatment group is blue, and the control group is orange.

10 2 4 6 2 3 −2−110−1 4 5 7 7 5
5 −2 5 5 2 0 2 −1−1 6 7 −4−2−1 3

−2 2 3 0 1 −3 5 9 1 −3 0 3 5 9 −3
3 2 −1−1−3 2 4 −2 1 7 −4 7 −2−3 1
0 4 1 3 1 2 6 7 4 3 8 0 3 1 8
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2 −3−2 4 7 −1 2 7 0 7 −1 0 2 1 3 Population values:

• ̄𝑌𝑋=0 = 1.64
• ̄𝑌𝑋=1 = 2.59
• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 = 0.95

Sample values:
• ̄𝑌𝑋=0 = 1.57
• ̄𝑌𝑋=1 = 2.5
• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 = 0.93
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Population vs samples example

The treatment group is blue, and the control group is orange.

10 2 4 6 2 3 −2−110−1 4 5 7 7 5
5 −2 5 5 2 0 2 −1−1 6 7 −4−2−1 3

−2 2 3 0 1 −3 5 9 1 −3 0 3 5 9 −3
3 2 −1−1−3 2 4 −2 1 7 −4 7 −2−3 1
0 4 1 3 1 2 6 7 4 3 8 0 3 1 8
2 1 4 3 −1 2 4 −4 0 0 −1−2 2 0 0
5 2 6 6 4 2 2 2 10−1 7 1 −1 8 3

−5 1 2 −4 8 3 0 1 2 0 −1 3 3 6 4
1 1 5 0 3 2 3 4 −2 2 2 −4 2 7 −3
6 3 7 0 3 1 0 2 5 3 1 6 0 5 −3
3 0 1 −212−1 2 3 −2 2 3 5 −4 0 1
2 −1 4 1 −2 4 0 3 7 3 0 2 3 −1−3
1 3 −2 5 6 3 6 3 −1 2 8 4 2 2 3
3 6 3 1 −5 1 2 2 3 3 −5 7 4 2 5
2 −3−2 4 7 −1 2 7 0 7 −1 0 2 1 3 Population values:

• ̄𝑌𝑋=0 = 1.64
• ̄𝑌𝑋=1 = 2.59
• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 = 0.95

Sample values:
• ̄𝑌𝑋=0 = 0.4
• ̄𝑌𝑋=1 = 1.65
• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 = 1.25
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Sampling variation

Intuition: if we randomly sample our observations (𝑌1, … , 𝑌𝑛)
from a broader population, then

• ̄𝑌𝑋=0 will differ from one sample to the next
• ̄𝑌𝑋=1 will differ from one sample to the next

• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 will be different from one sample to the next

Implication: Without sampling many times, we do not know
whether the particular sample difference in means we find in our
data is close to or far from the population difference in means.
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Sampling variation in potential outcomes

Sampling variation is more intuitive in the context of individuals
drawn from a broader population.

What about the examples we have had when we observe the entire
population?

1. Experiments where we see all treatment and control units
2. Observational studies where we observe the whole population

of units

While we observe all units, we only observe a sample of the
potential outcomes for all units.
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Samples of potential outcomes example

True ATE = 1.13

0 1 4 4 4 1 −1 2 2 −1 0 0 1 5 3
4 4 2 4 1 2 6 9 −3 6 2 4 3 1 1
6 5 2 5 3 −2 7 0 3 4 6 1 4 2 5
6 2 5 3 0 1 2 0 0 −1 5 1 2 1 2
3 2 1 −1−2 6 2 4 −2 5 8 5 3 0 3
3 1 3 −2 0 −3 5 8 −2 1 −4 0 −1 3 0
9 −4 5 5 −1 6 −9 7 5 2 2 4 2 4 3
2 3 5 7 8 8 6 5 9 3 2 5 0 −3 5
3 0 3 −3 5 −1 2 3 6 4 0 −1 5 −2 2
0 4 2 2 3 1 4 2 0 0 5 3 2 4 0

−1 0 6 5 0 2 4 9 −1 6 4 4 1 −1 3
5 6 −2−2 6 3 0 −6−1−110 0 1 4 3
5 6 2 1 3 0 1 1 5 3 7 2 −3 1 0
6 −1 7 3 1 2 1 4 4 1 7 0 2 −1 3

−1 2 1 −2 2 4 1 6 2 2 3 1 5 4 7

Potential outcomes under treatment

4 −6 4 7 5 0 6 −3 1 −3 1 4 −5 3 0
4 4 3 1 −2 0 −1−4 2 2 2 6 3 1 0

−4 3 2 2 0 6 −1−2 3 4 −1−2 8 3 1
−2 0 2 5 5 0 −3 4 1 0 −4 1 1 4 5
2 −1−3−2 2 4 1 4 −1 1 3 1 2 2 −4

−2 2 3 −2 4 6 4 3 5 −4 2 1 4 4 −1
1 8 3 6 −2 6 2 1 3 1 −2−2 2 4 2
3 1 3 0 0 3 −3 0 −1−3 3 0 4 −2 7

−1 1 2 2 4 −1 4 6 3 −2 0 0 1 −1 3
2 4 0 −3 3 −4 3 0 5 1 8 0 4 −2 2

−3−5 1 2 8 5 −1−2 0 −4 4 −1 4 5 3
−6 3 3 4 2 −1 0 2 −3 6 −3 5 0 1 −2
2 −2 1 4 2 1 2 −1 0 1 −1 0 5 1 0
4 −1 1 3 4 6 1 5 −4 2 3 4 2 3 −4
2 0 2 −3 1 6 −1−2−2 2 −5 4 3 −2−2

Potential outcomes under control
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−4 3 2 2 0 6 −1−2 3 4 −1−2 8 3 1
−2 0 2 5 5 0 −3 4 1 0 −4 1 1 4 5
2 −1−3−2 2 4 1 4 −1 1 3 1 2 2 −4

−2 2 3 −2 4 6 4 3 5 −4 2 1 4 4 −1
1 8 3 6 −2 6 2 1 3 1 −2−2 2 4 2
3 1 3 0 0 3 −3 0 −1−3 3 0 4 −2 7

−1 1 2 2 4 −1 4 6 3 −2 0 0 1 −1 3
2 4 0 −3 3 −4 3 0 5 1 8 0 4 −2 2

−3−5 1 2 8 5 −1−2 0 −4 4 −1 4 5 3
−6 3 3 4 2 −1 0 2 −3 6 −3 5 0 1 −2
2 −2 1 4 2 1 2 −1 0 1 −1 0 5 1 0
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Potential outcomes under control

Estimated ATE = 1.21
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Samples of potential outcomes example

True ATE = 1.13

0 1 4 4 4 1 −1 2 2 −1 0 0 1 5 3
4 4 2 4 1 2 6 9 −3 6 2 4 3 1 1
6 5 2 5 3 −2 7 0 3 4 6 1 4 2 5
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4 −1 1 3 4 6 1 5 −4 2 3 4 2 3 −4
2 0 2 −3 1 6 −1−2−2 2 −5 4 3 −2−2

Potential outcomes under control

Estimated ATE = 0.89
12 / 46



Samples of potential outcomes example

True ATE = 1.13

0 1 4 4 4 1 −1 2 2 −1 0 0 1 5 3
4 4 2 4 1 2 6 9 −3 6 2 4 3 1 1
6 5 2 5 3 −2 7 0 3 4 6 1 4 2 5
6 2 5 3 0 1 2 0 0 −1 5 1 2 1 2
3 2 1 −1−2 6 2 4 −2 5 8 5 3 0 3
3 1 3 −2 0 −3 5 8 −2 1 −4 0 −1 3 0
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6 −1 7 3 1 2 1 4 4 1 7 0 2 −1 3

−1 2 1 −2 2 4 1 6 2 2 3 1 5 4 7

Potential outcomes under treatment

4 −6 4 7 5 0 6 −3 1 −3 1 4 −5 3 0
4 4 3 1 −2 0 −1−4 2 2 2 6 3 1 0

−4 3 2 2 0 6 −1−2 3 4 −1−2 8 3 1
−2 0 2 5 5 0 −3 4 1 0 −4 1 1 4 5
2 −1−3−2 2 4 1 4 −1 1 3 1 2 2 −4

−2 2 3 −2 4 6 4 3 5 −4 2 1 4 4 −1
1 8 3 6 −2 6 2 1 3 1 −2−2 2 4 2
3 1 3 0 0 3 −3 0 −1−3 3 0 4 −2 7

−1 1 2 2 4 −1 4 6 3 −2 0 0 1 −1 3
2 4 0 −3 3 −4 3 0 5 1 8 0 4 −2 2

−3−5 1 2 8 5 −1−2 0 −4 4 −1 4 5 3
−6 3 3 4 2 −1 0 2 −3 6 −3 5 0 1 −2
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Potential outcomes under control

Estimated ATE = 0.77
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Sampling variation in potential outcomes

Intuition: if we randomly assign our observations to treatment and
control

• ̄𝑌𝑋=0 will differ from one sample to the next
• ̄𝑌𝑋=1 will differ from one sample to the next
• the estimated ATE will be different from one sample to the

next

Implication: Even when we observe the entire population, we do
not know whether the estimated ATE is close to or far from the
true ATE.
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Sampling variation

Key Question: How much should we expect the difference in
means to vary across samples?
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How much will the difference in means vary across samples?

Let’s pretend that our motherhood data includes the full population,
and we will sample from that population using R.

## Define the sample size
n_sample <- 300

## Sample once from the data
### sample 300 row numbers
sampled_rows <- sample(1:nrow(motherhood), n_sample, replace = T)
### subset of sampled rows
mother_sample <- motherhood[sampled_rows,]

## Difference in means for the sample
mean(mother_sample$wage[mother_sample$isMother == 1]) -

mean(mother_sample$wage[mother_sample$isMother == 0])

## [1] -0.7165097
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How much will the difference in means vary across samples?

If we repeatedly sample from the population, and calculate the dif-
ference in means, we will end up with a distribution.

# Define a function to do this
diff_means <- function(){

## sample rows and subset
sampled_rows <- sample(1:nrow(motherhood), n_sample, replace = T)
mother_sample <- motherhood[sampled_rows,]

## calculate difference in means
mean(mother_sample$wage[mother_sample$isMother == 1]) -

mean(mother_sample$wage[mother_sample$isMother == 0])
}

# Replicate the sampling process 5000 times
diff_in_means_dist <- replicate(5000, diff_means())
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How much will the difference in means vary across samples?

hist(diff_in_means_dist, breaks = 30,
main = "",xlab = "Estimated Difference in Means")

abline(v = wage_mothers - wage_not_mothers, col = "red", lwd = 3)
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Sampling distribution

Estimated Difference in Means
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1. The distribution is centered
around the true
“population” difference in
means

2. There is variability from
sample to sample

3. This distribution takes a
distinctive “bell” shape
(more on this later)

4. This distribution is called
the sampling distribution
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Sampling distribution

Sampling distribution
The sampling distribution is the distribution of values that results
from calculating the difference in means for many samples taken
from the population.

• The sampling distribution is a hypothetical concept, in most
applications we just observe one sample, not many.

• The same is true of potential outcomes, some of which we
cannot observe, but which help us to think about the logic of
causal inference.
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Standard deviation of the sampling distribution

Critical question we still haven’t answered: how much does the
difference in means vary over these hypothetical samples?

You already know how to calculate the spread of a distribution!

## standard deviation
sd(diff_in_means_dist)

## [1] 0.7382555

Implication: The estimates of the difference in means across
samples have a standard deviation of 0.74 dollars around the mean
(of the population).

The standard deviation of the sampling distribution has a special
name: the standard error.
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Standard error

Even though we do not observe the sampling distribution, we can
nonetheless calculate an estimate of the standard error of the
difference in means from information found a single sample:

𝑆𝐸( ̂𝑌𝑋=1 − ̂𝑌𝑋=0) = √𝑉 𝑎𝑟(𝑌𝑋=1)
𝑛𝑋=1

+ 𝑉 𝑎𝑟(𝑌𝑋=0)
𝑛𝑋=0

Standard error
The standard error is the estimated standard deviation of the
sampling distribution. It describes how much we expect the
difference in means in our samples to differ from the true
population difference in means, on average.
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Standard error

Even though we do not observe the sampling distribution, we can
nonetheless calculate an estimate of the standard error of the
difference in means from information found a single sample:

𝑆𝐸( ̂𝑌𝑋=1 − ̂𝑌𝑋=0) = √𝑉 𝑎𝑟(𝑌𝑋=1)
𝑛𝑋=1

+ 𝑉 𝑎𝑟(𝑌𝑋=0)
𝑛𝑋=0

Intuition:
1. The standard error increases when the variance of the

outcome variable – 𝑉 𝑎𝑟(𝑌𝑋=1) and 𝑉 𝑎𝑟(𝑌𝑋=0) – increases

2. The standard error decreases when the number of
observations in each group – 𝑛𝑋=1 and 𝑛𝑋=0 – increases
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Standard error

Even though we do not observe the sampling distribution, we can
nonetheless calculate an estimate of the standard error of the
difference in means from information found a single sample:

𝑆𝐸( ̂𝑌𝑋=1 − ̂𝑌𝑋=0) = √𝑉 𝑎𝑟(𝑌𝑋=1)
𝑛𝑋=1

+ 𝑉 𝑎𝑟(𝑌𝑋=0)
𝑛𝑋=0

For a single sample from the motherhood data:

var_x_1 <- var(mother_sample$wage[mother_sample$isMother == 1])
var_x_0 <- var(mother_sample$wage[mother_sample$isMother == 0])

n_x_1 <- sum(mother_sample$isMother == 1)
n_x_0 <- sum(mother_sample$isMother == 0)

sqrt((var_x_1/n_x_1) + (var_x_0/n_x_0))

## [1] 0.6499978
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The Central Limit Theorem



Example

Let’s look at the sampling distribution again:

Estimated Difference in Means

D
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0.
4

Does the shape seem familiar?

It closely resembles a normal
distribution.
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Normal distribution

The normal distribution is a probability distribution described by
two parameters: the mean (𝜇), and the variance (𝜎2)1
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The red distribution has:
• 𝜇 = 0
• 𝜎2 = 1

The blue distribution has:
• 𝜇 = 2
• 𝜎2 = 0.71

1Note: the standard deviation is just the square root of the variance:
√

𝜎2 = 𝜎
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The normal distribution is a probability distribution described by
two parameters: the mean (𝜇), and the variance (𝜎2)1
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68% obs

95% obs

99% obs

Any normally distributed variable
has:

• 68% of observations within
1 sd of the mean.

• 95% of observations within
1.96 sd of the mean.

• 99% of observations within
2.58 sd of the mean.

1Note: the standard deviation is just the square root of the variance:
√

𝜎2 = 𝜎
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Normal distribution example

Normal Distribution

Height (cm)

12
0

14
0
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0

18
0

20
0

• Human height is very close to normally distributed
• The mean female height in the UK (𝜇) is 162cm
• The standard deviation of female heights (𝜎) is 9cm
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Normal distribution example

Normal Distribution

Height (cm)
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P( 153 < Height < 171 ) = 0.68

1sd 1sd

• For a normal distribution, 68% of data is within 1 sd of the
mean.

• Here, 68% of women are between 153 and 171 cm.
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Normal distribution example

Normal Distribution

Height (cm)

12
0

14
0
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0
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0

20
0
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P( 144 < Height < 180 ) = 0.95

1.96sd 1.96sd

• For a normal distribution, 95% of data is within 1.96 sd of the
mean.

• Here, 95% of women are between 144 and 180 cm.
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Normal distribution example

Normal Distribution

Height (cm)
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0

95% obs

• What is the probability of observing a woman taller than 180cm?

• Approximately 2.5%
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Normal distribution example

Normal Distribution

Height (cm)

12
0

14
0

16
0

18
0

20
0

95% obs

2.5% obs 2.5% obs

• What is the probability of observing a woman taller than 180cm?
• Approximately 2.5%
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A “normal” sampling distribution

Estimated Difference in Means
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• If our sampling distribution is
normal, we will be able to use
these features to calculate the
probabilities of certain values

• It is not a coincidence that our
sampling distribution looks
normal!
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The Central Limit Theorem

The Central Limit Theorem
The central limit theorem (CLT) says that, when the size of the
sample (𝑛) is large, the distribution of ̄𝑌 (the sample average) is
approximately normal.

The sampling distribution of ̄𝑌 is:

• exactly normal when the sample is drawn from a population
with the normal distribution

• approximately normal when the sample is drawn from a
population with any distribution, so long as 𝑛 is sufficiently
large

How large is “sufficiently large” depends on the underlying 𝑌𝑖
distribution (𝑛 > 30 at a minimum).
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The Central Limit Theorem simulation

To demonstrate the CLT, we conduct the following simulation in R:

1. Create 10000 observations of Y which is our population. E.g.
• pop <- rnorm(n = 10000, mean = 10, sd = 3)

for a normally distributed Y
2. Sample 200 observations from Y, and calculate ̄𝑌

• mean(sample(pop, n = 200))

3. Replicate step 2 1000 times, and plot the sampling distribution
• replicate(1000, mean(sample(pop, n = 200)))
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The Central Limit Theorem simulation

Distribution of Y in the population
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The Central Limit Theorem

Key finding: Regardless of the shape of the underlying population
distribution, the sampling distribution of sample averages will be
approximately normally distributed so long as the sample size is
large enough.

• The same applies for the sampling distribution of the
difference in means

• This is useful because we can apply the properties of the
normal distribution to our estimated difference in means

• We will do this in the second part of the lecture.

31 / 46



Confidence intervals



Summarizing the variability in the difference in means

Sampling variation means we can’t be sure that our sample
difference in means ̄𝑌𝑋=1 − ̄𝑌𝑋=0 is equal to the population
difference in means.

While we cannot observe the sampling distribution directly, we can
estimate the standard error, which summarises the variability in our
estimates.

We can then use the standard error to construct confidence
intervals.

• Confidence intervals are another way of quantifying the
uncertainty about the population associated with the fact that
we only observed a sample of data.
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Confidence intervals

Confidence interval
A confidence interval is a range of numbers that we believe is
likely to contain the true difference in means. Confidence
intervals are constructed so that they contain the true difference
in means in a fixed proportion of samples. This is called the
confidence level, which we must select before computing the
interval.

Implication: Confidence intervals quantify our uncertainty by giving
a range of values that are likely to include the true population
difference in means.
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Calculating confidence intervals

1. Select a confidence level (typically 95% or 99%)
2. Calculate the difference in means
3. Calculate the standard error
4. Select the critical value of the standard normal distribution

that corresponds to the confidence level2
• The critical value for the 95% confidence level is 1.96
• The critical value for the 99% confidence level is 2.58

5. Compute the upper and lower ends of the confidence interval:
• Upper: ̄𝑌𝑋=1 − ̄𝑌𝑋=0 + 1.96 ∗ 𝑆𝐸( ̄𝑌𝑋=1 − ̄𝑌𝑋=0)
• Lower: ̄𝑌𝑋=1 − ̄𝑌𝑋=0 − 1.96 ∗ 𝑆𝐸( ̄𝑌𝑋=1 − ̄𝑌𝑋=0)

2You can select any critical value, although these are the most commonly used.
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Confidence intervals and the sampling distribution

Question: What is the connection between the confidence interval
and the sampling distribution?

• The sampling distribution tells us how the statistic we are
calculating – here, the difference in means – will vary around
the population value for that statistic across different samples.

• The confidence interval is constructed to include the
population value with some probability across different
samples.

• The fact that the sampling distribution is always
approximately normal means that the standard error is all we
need to calculate a confidence interval around our estimate of
the difference in means.
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Confidence intervals (coverage)

When repeatedly sampling from the population, confidence
intervals constructed for each sample will contain the true value
with a pre-specified probability.

• A 95% interval will include the true difference in 0.95 of our samples
• A 99% interval will include the true difference in 0.99 of our samples

We can simulate this by treating our motherhood data as the population:

1. Draw a sample from the motherhood data
2. Calculate the difference in means and standard error for that sample
3. Calculate the 95% confidence interval for that sample
4. What proportion of intervals include the true difference in means?
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Interpretation

Interpretation confidence intervals

• a 95% CI has a .95 probability of bracketing the true
population mean

• NOT: the true value has a .95 probablity of falling within the
brackets of a given 95% CI

• a 99% CI has a .99 probability of bracketing the true
population mean

• NOT: the true value has a .99 probablity of falling within the
brackets of a given 99% CI
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Confidence interval simulation

−4 −2 0 2 4
Difference in means

Includes true value Does not include true value
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Calculating the confidence interval for the motherhood wage
penalty

What is the confidence interval for the difference in means in the
full sample of the motherhood data?

## Difference in means
wage_mothers <- mean(motherhood$wage[motherhood$isMother == 1])
wage_not_mothers <- mean(motherhood$wage[motherhood$isMother == 0])
diff_mother <- wage_mothers - wage_not_mothers
diff_mother

## [1] -0.4889398
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Calculating the confidence interval for the motherhood wage
penalty

What is the confidence interval for the difference in means in the
full sample of the motherhood data?

## Standard error
var_x_1 <- var(motherhood$wage[motherhood$isMother == 1])
var_x_0 <- var(motherhood$wage[motherhood$isMother == 0])

n_x_1 <- sum(motherhood$isMother == 1)
n_x_0 <- sum(motherhood$isMother == 0)

se_motherhood <- sqrt((var_x_1/n_x_1) + (var_x_0/n_x_0))
se_motherhood

## [1] 0.2691242
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Calculating the confidence interval for the motherhood wage
penalty

What is the confidence interval for the difference in means in the
full sample of the motherhood data?

## 95% Confidence interval
diff_mother - 1.96 * se_motherhood

## [1] -1.016423

diff_mother + 1.96 * se_motherhood

## [1] 0.03854365

Interpretation: The 95% CI for the mean difference ranges from -
1.02 to 0.04
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Calculating the confidence interval for the motherhood wage
penalty

What is the confidence interval for the difference in means in the
full sample of the motherhood data?

## 99% confidence interval
diff_mother - 2.58 * se_motherhood

## [1] -1.18328

diff_mother + 2.58 * se_motherhood

## [1] 0.2054007

Interpretation: The 99% CI for the mean difference ranges from -
1.18 to 0.21
Note: The greater confidence level yields a wider interval
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Calculating the confidence interval for the motherhood wage
penalty

What is the confidence interval for the difference in means in the
full sample of the motherhood data?

## 99% confidence interval
diff_mother - 2.58 * se_motherhood

## [1] -1.18328

diff_mother + 2.58 * se_motherhood

## [1] 0.2054007

Conclusion: It is important to note that this interval includes the
value of 0. Therefore it is plausible given the size of the sample and
the difference we observe in the sample, that there is in fact no
difference between the hourly wages of mothers and non-mothers
in the population.
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Calculating the confidence interval for the motherhood wage
penalty

What is the confidence interval for the difference in means in the
full sample of the motherhood data?
An easier way:

t.test(x = motherhood$wage[motherhood$isMother == 1],
y = motherhood$wage[motherhood$isMother == 0],
conf.level = .95)

...
## t = -1.8168, df = 2140.3, p-value = 0.06939
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.01671199 0.03883242
## sample estimates:
## mean of x mean of y
## 11.32977 11.81871
...

39 / 46



t-distribution

• The “t-test” on the previous slide assumes that the sampling
distribution follows a “t-distribution” rather than the normal
distribution.

• The t-distribution is very close to a normal distribution, unless
the sample size you are using is very small (eg less than 30)

• The confidence intervals calculated assuming that the
sampling distribution is a t-distribution will be somewhat
wider with very small sample sizes, but are indistinguishable
for most data sets.
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What determines the width of the confidence interval?

̄𝑌𝑋=1 − ̄𝑌𝑋=0 ± 1.96 ∗ 𝑆𝐸( ̄𝑌𝑋=1 − ̄𝑌𝑋=0)
Note that the confidence interval’s width is determined by

1. The critical value
• Larger critical values (higher confidence levels) result in wider

intervals
2. The standard error

• Larger standard errors result in wider intervals

Implication: the same factors that affect the size of the standard
error (sample size, variance of 𝑌 ) will also affect the width of the
confidence interval.
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Sample size and the width of the confidence interval

−5.0 −2.5 0.0 2.5
Difference in means

95% confidence 99% confidence

n = 200

−5.0 −2.5 0.0 2.5
Difference in means

95% confidence 99% confidence

n = 1000
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Confidence intervals for the RAND experiment

Does health insurance improve health outcomes?

## Mean health level for insured
mean_health_insured <- mean(rand$health[rand$insured == TRUE])

## Mean health level for uninsured
mean_health_uninsured <- mean(rand$health[rand$insured == FALSE])

mean_health_insured - mean_health_uninsured

## [1] -0.01895885
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Confidence intervals for the RAND experiment

Does health insurance improve health outcomes?

t.test(x = rand$health[rand$insured == TRUE],
y = rand$health[rand$insured == FALSE],
conf.level = .95)

...
## t = -0.47235, df = 691.9, p-value = 0.6368
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.09776506 0.05984736
## sample estimates:
## mean of x mean of y
## 3.388057 3.407016
...
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Confidence intervals for the RAND experiment

Does health insurance improve health outcomes?

...
## 95 percent confidence interval:
## -0.09776506 0.05984736
...

Implications:
• We cannot be confident that the treatment effect was

negative in the population of potential outcomes, from which
the experiment yielded a sample.

• → We cannot be confident that the treatment had a negative
average treatment effect.
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Conclusion



What have we learned?

• Sampling variation means the quantities of interest estimated
from a sample will not be exactly equal to those quantities in
the population

• Applies to sampling units from a larger population of units
• Applies to sampling potential outcomes (under treatment vs

control) for units via an experiment.

• We can conceptualise sampling uncertainty via the sampling
distribution, which describes how much estimates will vary
across samples
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What have we learned?

• The central limit theorem says that, when 𝑛 is large, the
sampling distribution will be approximately normally
distributed

• Confidence intervals are one way of summarising the
uncertainty we have about populations when we do data
analysis on samples from those populations.

45 / 46



Seminar

In seminars this week, you will learn to …

1. …calculate standard errors.
2. …estimate and interpret confidence intervals.
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