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The Lady Tasting Tea (Fisher, 1925)

Imagine you are in an early 1920s agricultural research station.

It is time for tea……
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The Lady Tasting Tea (Fisher, 1925)

• One of the scientists, Dr Muriel Bristol, claims to be able to
distinguish whether the milk or the tea had been poured into
the cup first.
• This is a hypothesis

• A test was arranged by dubious colleagues.
• …the test was 8 cups, 4 of each type, in random order…
• …and Dr. Bristol correctly identified all 4 cups into which the

milk was poured first.

• How much evidence is this for Dr Bristol’s claim?
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The Lady Tasting Tea (Fisher, 1925)

• If Dr Bristol does not have the ability to distinguish between
milk first and tea first, how likely would it be that she would
correctly guess 4 out of 4 tea-first cups?

• To figure out the frequency of different possibilities, we ask
the following:
• How many different ways are there to (not) pick 4 cups out of

8?

Successful Selected Unselected Total Possible
guesses Possibilities Possibilities Combinations

0 MMMM TTTT 1 × 1

1 MMMT, MMTM, TTTM, TTMT, 4 × 4MTMM, TMMM TMTT, MTTT

2 MMTT, MTMT, MTTM, TTMM, TMTM, TMMT, 6 × 6TMTM, TTMM, TMMT MTMT, MMTT, MTTM

3 MTTT, TMTT, TMMM, MTMM, 4 × 4TTMT, TTTM MMTM, MMMT
4 TTTT MMMM 1 × 1

Total 70
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What were the chances?

• Assume that Dr Bristol really cannot tell the difference
between methods of preparing the tea.
• This is the null hypothesis

• How many different ways were there to pick 4 cups out of 8?
• From the table on the previous slide, we saw that this was 70.

• To perform a test of the null hypothesis, we ask:
• If the null hypothesis is true, what is the probability that we

would observe what we observed?
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What were the chances?

If the null hypothesis is true, what is the probability that we would
observe what we observed?

• We observed Dr Bristol correctly selecting 4 out of 4 cups –
this is our test statistic

• We need to derive the sampling distribution of our test
statistic under the assumption that the null hypothesis is true
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What were the chances?
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• If Dr Bristol was really only
guessing, the probability that
she would have correctly
identified all four cups of tea:

1
70 ≈ 0.014

• This is the p-value

• It tells us the probability of
observing the data we observe
under the assumption that the
null hypothesis is true.
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Does Dr Bristol have special tea-drinking abilities?

What should we conclude?

• It is relatively unlikely that Dr Bristol would have correctly
identified the four milk-first cups if she did not have this ability
• 𝑝 = 0.014

• It is not impossible that she simply got lucky…

• Conclusion: We are relatively confident that we can reject the
null hypothesis, but we cannot be 100% certain.

The hypothesis tests we will cover today are all based on this type
of logic.
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Hypothesis Tests



Hypothesis testing

There are several main elements to any hypothesis test:

1. State the hypothesis and the null hypothesis
2. Calculate a test-statistic
3. Derive the sampling distribution of the test statistic under the

assumption that the null hypothesis is true
4. Calculate the p-value
5. State a conclusion
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When do we reject the null hypothesis?

• We reject the null hypothesis if the association we observe
between two variables is unlikely to have been observed by
chance.

• This probability is called the 𝛼-level and usually takes a value
of 0.05 or 0.01.

• When we choose an 𝛼-level, we are saying:
• “I will reject the null hypothesis if the probability that I observed a

given relationship (test statistic) in my sample, if in fact there was
no relationship in the population1, is below 𝛼.”

• The confidence level from last week is just (1 − 𝛼) ∗ 100
• 𝛼 = 0.05, confidence = 95%
• 𝛼 = 0.01, confidence = 99%

1i.e. the null hypothesis were true.
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What does 𝛼 mean in practice?

• Think back to the lady tasting tea
• there was a 1.4% probability that the lady would identify the

correct cups just by guessing
• if we selected 𝛼 = 0.05 we would reject the null hypothesis

(that she doesn’t have special tea tasting abilities)
• but she may just have been lucky that time! Even if she

doesn’t have any ability to distinguish the preparations, she
will sometimes get all the cups right by chance and we will
incorrectly reject the null

• An 𝛼-level of 0.05 implies that, in the process of repeated
sampling, we will incorrectly reject the null hypothesis 5% of
the time

• An 𝛼-level of 0.01 implies that, in the process of repeated
sampling, we will incorrectly reject the null hypothesis 1% of
the time
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Type-I versus type-II errors

Two potential mistakes of any hypothesis test:

• Type-I error
• When we reject a null hypothesis that is true
• Or when we find support for a hypothesis that is false

• Type-II error
• When we fail to reject a null hypothesis that is false
• Or when we do not find support for a hypothesis even though

it is true

There is a trade-off between minimising type-I and type-II errors:

• As we increase our 𝛼-level, we are more likely to commit a
Type-I error, and less likely to commit a Type-II error
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t-tests for the difference in two means

• Often we are interested in whether the mean for one group is
different from the mean for another group
• Do people with health insurance have better health outcomes?
• Do students in smaller classes get better grades?

• A natural hypothesis to test here is whether the means of the
two groups are different in the population

• A t-test can be used to conduct a hypothesis test for the
difference in means between two groups

• Requires an interval-level dependent variable (Y) and binary
independent variable (X)
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t-tests for the difference in means

The null hypothesis is that there is no difference between the
means of the two groups in the population

• 𝐻0: 𝐸(𝑌 |𝑋 = 1) = 𝐸(𝑌 |𝑋 = 0) → 𝜇𝑌𝑥=1
− 𝜇𝑌𝑥=0

= 0

The test statistic for the difference in means (for a null hypothesis
of no difference) is

𝑡 =
( ̄𝑌𝑋=1 − ̄𝑌𝑋=0) − (𝜇𝑌𝑥=1 − 𝜇𝑌𝑥=0)

𝑆𝐸(𝑌𝑋=1 − 𝑌𝑋=0) = ( ̄𝑌𝑋=1 − ̄𝑌𝑋=0)

√ 𝑠2
𝑌𝑋=1

𝑛𝑋=1
+ 𝑠2

𝑌𝑋=0
𝑛𝑋=0

• 𝜇𝑌𝑥=1
− 𝜇𝑌𝑥=0

is the difference in means under the null (0)
• 𝑠2

𝑌𝑋=1
and 𝑠2

𝑌𝑋=0
are the sample variances for each group

15 / 56



t-tests for the difference in means

The null hypothesis is that there is no difference between the
means of the two groups in the population

• 𝐻0: 𝐸(𝑌 |𝑋 = 1) = 𝐸(𝑌 |𝑋 = 0) → 𝜇𝑌𝑥=1
− 𝜇𝑌𝑥=0

= 0
The test statistic for the difference in means (for a null hypothesis
of no difference) is

𝑡 =
( ̄𝑌𝑋=1 − ̄𝑌𝑋=0) − (𝜇𝑌𝑥=1 − 𝜇𝑌𝑥=0)

𝑆𝐸(𝑌𝑋=1 − 𝑌𝑋=0) = ( ̄𝑌𝑋=1 − ̄𝑌𝑋=0)

√ 𝑠2
𝑌𝑋=1

𝑛𝑋=1
+ 𝑠2

𝑌𝑋=0
𝑛𝑋=0

• 𝜇𝑌𝑥=1
− 𝜇𝑌𝑥=0

is the difference in means under the null (0)
• 𝑠2

𝑌𝑋=1
and 𝑠2

𝑌𝑋=0
are the sample variances for each group

15 / 56



t-tests for the difference in means

The test statistic for the difference in means is

𝑡 =
̄𝑌𝑋=1 − ̄𝑌𝑋=0 − 0

𝑆𝐸(𝑌𝑋=1 − 𝑌𝑋=0) =
̄𝑌𝑋=1 − ̄𝑌𝑋=0

√𝑠2
𝑌𝑋=1

𝑛𝑋=1
+ 𝑠2

𝑌𝑋=0
𝑛𝑋=0

Intuition:

• More evidence of difference in the population when the
sample difference in means is larger

• More evidence of difference in the population when the
standard error is smaller

• 𝑡 measures the number of standard errors separating the mean
of one group from the mean of another group
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t-test example: Class sizes and student grades

The STAR Experiment
The STAR project was a randomized experiment designed to test
the causal effects of class sizes on learning. Students in
Tennessee schools were randomly assigned either to regular sized
classes (22-25 students, the control group) or to smaller classes
(15-17 students, the treatment group). We can use the results
of this experiment to see the effect of small class sizes on student
learning.

• Y (Dependent variable): grade
• Student grade on a standardised math test (0 to 100)

• X (Independent variable): small_class
• TRUE = student in small class, FALSE = student in regular

sized class
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Difference-in-means

# Treated mean grade
mean_grade_treated <- mean(star$grade[star$small_class == TRUE])
mean_grade_treated

## [1] 48.04885

# Control mean grade
mean_grade_control <- mean(star$grade[star$small_class == FALSE])
mean_grade_control

## [1] 45.82546

# Difference in means
diff_in_means <- mean_grade_treated - mean_grade_control
diff_in_means

## [1] 2.22339

The results suggest that small classes cause modest improvements in student
grades. 18 / 56



t-test

# Group variance
var_grade_treated <- var(star$grade[star$small_class == 1])
var_grade_control <- var(star$grade[star$small_class == 0])

# Group n
n_treated <- sum(star$small_class == 1)
n_control <- sum(star$small_class == 0)

# standard error
std_error <- sqrt((var_grade_treated/n_treated) +

(var_grade_control/n_control))
std_error

## [1] 0.3486694
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t-test

# t-statistic
t_stat <- diff_in_means/std_error
t_stat

## [1] 6.376787

19 / 56
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Sampling distribution for the t-statistic

Just as in the lady tasting tea example, we can ask: “what are the
chances that we would observe that test statistic if the null
hypothesis were true?”
• The distribution of our test statistic under the null hypothesis will

follow a standard normal distribution because of the central limit
theorem.

• The t-statistic measures the number of standard errors separating
the mean of one group from the mean of another group

• If the population difference in means is 0, 95% of the samples we
draw should result in a difference in means that is between 1.96
standard errors from 0

Implication: If our test-statistic is greater than 1.96 or less than
-1.96, this suggests it is unlikely that the population difference in
means is 0!
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P-values for the difference in means

The probability of observing our estimated test statistic under the
null hypothesis is called the p-value.

P-value
The p-value is the probability that the test-statistic we observe in
our sample, or a more extreme value, would be generated in other
samples from the population if the null hypothesis was true.

In our case, what is the probability of seeing a difference of means
of at least 2.22 in our sample if the population difference in
means is 0?
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P-values for the difference in means
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Implication: If the population difference in means is 0, then the
probability of observing a test-statistic of 6.38 in any given sample is tiny!
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t-test example: Class sizes and student grades

t.test(x = star$grade[star$small_class == 1],
y = star$grade[star$small_class == 0])

##
## Welch Two Sample t-test
##
## data: star$grade[star$small_class == 1] and star$grade[star$small_class == 0]
## t = 6.3768, df = 3129.1, p-value = 2.075e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.539747 2.907034
## sample estimates:
## mean of x mean of y
## 48.04885 45.82546

Note: 2.075e-10 = 0.0000000002074695
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P-values and t-statistics

Both t-statistics and p-values allow us to assess the amount of
evidence we have against the null hypothesis.

Interpretation:

• A large t-statistic provides evidence against the null hypothesis
• A t-statistic larger than 1.96 (or smaller than -1.96) allows us

to reject the null at the 95% confidence level
• A t-statistic larger than 2.58 (or smaller than -2.58) allows us

to reject the null at the 99% confidence level

• A small p-value provides evidence against the null hypothesis
• A p-value smaller than 0.05 allows us to reject the null at the

95% confidence level
• A p-value smaller than 0.01 allows us to reject the null at the

99% confidence level
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From hypothesis tests to confidence intervals

In our class size example we found that we could reject the null
hypothesis (at 𝛼 = 0.05) that 𝜇𝑌𝑋=1

− 𝜇𝑌𝑋=0
was equal to 0

𝑡 = (48.05 − 45.83) − 0
0.35 = 2.22

0.35 ≈ 6.38

What if we had picked a different null hypothesis?
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population?

𝑡 = (48.05 − 45.83) − 2
0.35 = 0.22

0.35 ≈ 0.64
No, we cannot reject the null hypothesis that 𝜇𝑌𝑋=1
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From hypothesis tests to confidence intervals

We could do this for all possible values of the population difference
in means:

• pick a new value for the null hypothesis
• test to see if we can reject the null

Continuing this process would give the set of values for the
population difference in means that cannot be rejected at the 95%
confidence level.

This set of values would be our 95% confidence interval!
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From hypothesis tests to confidence intervals
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• The red line indicates the
range of values for the
population difference in means
which cannot be rejected at
the 95% confidence level.

• This is the 95% confidence
interval
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𝛼 and the confidence level

Note that hypothesis tests and confidence intervals will always give
the same result for a given confidence level:

• If the null hypothesis for the difference in means is 0, and we
reject the null hypothesis at the 95% confidence level using a
hypothesis test, the value of 0 will not be within the 95%
confidence interval!

• If a 95% confidence interval does not include the value of 0,
we know that we would also reject the null hypothesis using a
hypothesis test with 𝛼 = 0.05.
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Statistical and “substantive” significance

Our current focus on statistical significance should add to, not
replace, our interest in the substantive significance of our results.

• “Statistical” significance is largely a function of sample size.
• If the sample size is very large, the standard error will be

small, and so will the p-value.
• But, this does not mean that the relationship is meaningful

from a substantive perspective!
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Is the effect meaningful?

Imagine that we conduct two new class size experiments.
The first experiment has 𝑁 = 20, 000, and we find the following:

• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 = 0.1
• 𝑆𝐸( ̄𝑌𝑋=1 − ̄𝑌𝑋=0) = 0.02
• 𝑡 = 5
• 𝑝 = 0.0000006

The second experiment has 𝑁 = 1, 000, and we find the following:

• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 = 4
• 𝑆𝐸( ̄𝑌𝑋=1 − ̄𝑌𝑋=0) = 2
• 𝑡 = 2
• 𝑝 = 0.05

The first experiment gives a more precise statistical result, but the
second suggests a more substantively important treatment effect.
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The second experiment has 𝑁 = 1, 000, and we find the following:

• ̄𝑌𝑋=1 − ̄𝑌𝑋=0 = 4
• 𝑆𝐸( ̄𝑌𝑋=1 − ̄𝑌𝑋=0) = 2
• 𝑡 = 2
• 𝑝 = 0.05

The first experiment gives a more precise statistical result, but the
second suggests a more substantively important treatment effect.
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Uncertainty in Regression



Sampling uncertainty in regression

We just saw that sampling variation means that quantity of
interest we calculate will vary across samples.

The same applies with regression coefficients – ̂𝛼 and ̂𝛽 – which
are also computed from our samples, and therefore are also subject
to sampling variation.

We therefore may want to:

• quantify the sampling uncertainty associated with ̂𝛼 and ̂𝛽
• construct confidence intervals
• use ̂𝛽1 to test hypotheses such as 𝛽1 = 0
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Motivation

Students and the electoral register
Before 2015 in the UK, the head of the household could register
all members of the household to vote. From 2015, all individuals
had to register separately. There were particular concerns that
this would lead to many students and young people ‘falling off’
the electoral register. We collect data on voter registration in 573
UK constituencies to evaluate this concern.

• Unit of analysis: 573 parliamentary constituencies (all
constituencies in England and Wales).

• Dependent variable (Y): Change in the number of registered
voters in a constituency (from 2010 to 2015).

• Independent variable (X): Percentage of a constituency’s
population who are full time students.
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Recap: students and the electoral register

Change in Reg

students −444.97∗∗∗

(26.99)
Constant 205.15∗

(119.46)

Observations 573
R2 0.32

Percentage of students
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Sampling variation for ̂𝛼 and ̂𝛽

Percentage of students
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Sampling variation for ̂𝛼 and ̂𝛽

Percentage of students
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Sampling variation for ̂𝛼 and ̂𝛽
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Sampling variation for ̂𝛼 and ̂𝛽

Percentage of students
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Sampling variation for ̂𝛼 and ̂𝛽

Percentage of students
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Sampling variation for ̂𝛼 and ̂𝛽

Percentage of students
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Standard error of regression coefficients

The standard error of the regression coefficients functions in the
same way as the standard error of the difference in means:

• It quantifies the degree of variability we would expect to see
across many samples: the sampling distribution

• The Central Limit Theorem tells us that, for
non-small-samples, this is all we need to know about the
sampling distribution of the regression coefficients, because
that sampling distribution will be a normal distribution.
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Hypothesis Test for Regression



Hypothesis tests for regression: example

• Problem: The government claimed that the new system of
voter registration did not affect students disproportionately.

• In our sample of data, a 1 point increase in the percentage of
students in a constituency is associated with a decrease of 445
in the number of registered voters

• Is this relationship statistically significantly different from 0?
• How compatible is our estimate with the (null) hypothesis of

the government?
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Hypothesis tests

Hypothesis tests for regression coefficients are very similar to those
for the difference in means:

1. Specify a hypothesis and a null hypothesis
2. Calculate the test-statistic
3. Derive the sampling distribution of the test-statistic under the

assumption that the null hypothesis is true
4. Calculate the p-value
5. State a conclusion
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Null and alternative hypothesis

In our example:

• 𝐻0: there is no association between the percentage of
students and voter registration in the population (𝛽 = 0)

• 𝐻𝐴: there is a non-zero association between the percentage
of students and voter registration in the population (𝛽 ≠ 0)
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Test statistic

The test statistic for a single regression coefficient is:

𝑡 =
̂𝛽 − 𝛽𝐻0

𝜎̂ ̂𝛽

where 𝜎̂ ̂𝛽 is the standard error of ̂𝛽.

• Note that in the very common case where the null hypothesis
is 𝛽𝐻0

= 0 the t-statistic simplifies to 𝑡 = ̂𝛽
𝜎̂ ̂𝛽

• You do not need to know how to calculate the standard error
(𝜎̂ ̂𝛽), but given ̂𝛽 and 𝜎̂ ̂𝛽, you need to be able to calculate 𝑡
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The sampling distribution of 𝑡

What is the sampling distribution of 𝑡?

• When 𝑛 is large (> 30) the Central Limit Theorem implies
that 𝑡 will follow the standard normal distribution

• When 𝑛 is small (< 30) the 𝑡 will follow a t-distribution with
n-1 degrees of freedom

• Most regression packages always use the 𝑡 distribution as the
normal distribution is only correct for large sample sizes

Implications

1. We can normally assume that 𝑡 will follow the standard
normal, unless 𝑛 is very small

2. We can use the same rules of thumb to assess significance as
we did previously (i.e. t > 1.96)
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Application to voter registration

For the regression of registration on the percentage of students we
obtain:

Change in Reg

students −444.97∗∗∗

(26.99)
Constant 205.15∗

(119.46)

Observations 573
R2 0.32

where the numbers in brackets are the standard errors of the
coefficients. 41 / 56



Application to voter registration

Change in Reg

students −444.97∗∗∗

(26.99)
Constant 205.15∗

(119.46)

Observations 573
R2 0.32

To test the government’s
hypothesis:

𝑡 =
̂𝛽 − 𝛽𝐻0
𝜎̂ ̂𝛽

= −445 − 0
27 ≈ −16

Can we reject the null hypothesis
at 𝛼 = 0.05?
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Application to voter registration

𝑡 =
̂𝛽 − 𝛽𝐻0

𝜎̂ ̂𝛽
= −445 − 0

27 ≈ −16

• The probability of observing a value of the t-statistic outside
the interval [−1.96, 1.96] is less than five percent under the
standard normal distribution.

• As the t-statistic is clearly outside this interval, the probability
that we would observe these data if 𝐻0 is true is less than five
percent.

• We can therefore reject the government’s claim at the 95%
confidence level.

43 / 56



Application to voter registration

R will automatically calculate the correct test-statistic for you:
summary(simple_ols_model)

...
## Min 1Q Median 3Q Max
## -5163.4 -787.0 -21.7 924.5 4921.4
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 205.15 119.46 1.717 0.0865 .
## students -444.97 26.99 -16.489 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1525 on 571 degrees of freedom
## Multiple R-squared: 0.3226, Adjusted R-squared: 0.3214
## F-statistic: 271.9 on 1 and 571 DF, p-value: < 2.2e-16
... 44 / 56



Statistical significance

• In the vast majority of t-tests the null hypothesis is that the
coefficient is equal to zero.

• In this case the null hypothesis is often not even stated and
you will encounter statements such as:
• The coefficient is significant at the 𝑋𝑋 percent level
• The coefficient is significant at conventional levels

• In all of these statements the implicit null hypothesis (or
simply “null”) is that the coefficient of interest is equal to
zero.
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Statistical significance

• We should not forget that t-test can nevertheless be used to
test also other null hypotheses.

• For example, can we reject the null that the true association
between the percentage of students and voter registration is
-460?

𝑡 =
̂𝛽 − 𝛽𝐻0

𝜎̂ ̂𝛽
= −445 − (−460)

27 ≈ 0.56

• As 0.56 falls within the interval (-1.96, 1.96), we fail to reject
the new null hypothesis that 𝛽𝐻0

= −460

46 / 56



P-values

We can also determine precisely how unlikely the government’s
hypothesis is given our estimates by calculating the p-value

summary(simple_ols_model)

...
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 205.15 119.46 1.717 0.0865 .
## students -444.97 26.99 -16.489 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
...

What does a p-value of < 2e-16 mean? - 2e-16
= 0.0000000000000002 - → it is very unlikely that we would
observe this test-statistic if the null hypothesis were true

47 / 56



Confidence intervals for regression coefficients

We can also estimate confidence intervals for ̂𝛽:

95% Confidence interval ∶ ̂𝛽 ± 1.96 ∗ 𝑆𝐸( ̂𝛽)

99% Confidence interval ∶ ̂𝛽 ± 2.58 ∗ 𝑆𝐸( ̂𝛽)

In the case of our regression the 95 percent confidence interval:

Lower bound: = −445 − 1.96 × 27 = −498

Upper bound: = −445 + 1.96 × 27 = −392

Intuition: The confidence interval contains all values of the
population parameter that cannot be rejected at the five percent
significance level given our estimate.
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Uncertainty in multiple linear regression

All of the interpretation we have covered for the simple linear
regression model translates to more complex linear models:

• Standard errors
• T-statistics
• P-values
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Uncertainty in multiple regression: example

multiple_ols_model <- lm(voters_change ~ students + urban + wales,
data = constituencies)

Change in Reg

(1) (2)

students −444.97∗∗∗ −418.21∗∗∗

(26.99) (26.75)
urban −692.62∗∗∗

(126.54)
wales −345.18

(243.83)
Constant 205.15∗ 456.63∗∗∗

(119.46) (124.86)

Observations 573 573
R2 0.32 0.36
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Hypothesis tests in multiple regression: example

Change in Reg

(1) (2)

students −444.97∗∗∗ −418.21∗∗∗

(26.99) (26.75)
urban −692.62∗∗∗

(126.54)
wales −345.18

(243.83)
Constant 205.15∗ 456.63∗∗∗

(119.46) (124.86)

Observations 573 573
R2 0.32 0.36

t-statistic for ̂𝛽2 (urban):

𝑡 =
̂𝛽2

𝜎̂ ̂𝛽2

= −693
127 ≈ −5

t-statistic for ̂𝛽3 (Wales):

𝑡 =
̂𝛽3

𝜎̂ ̂𝛽3

= −345
244 ≈ −1

Can we reject the nulls of 𝛽2 = 0
and 𝛽3 = 0 at the 95%
confidence level?
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Stargazing

You will have noticed that stars (***) are often presented in
regression output next to some coefficients.

These are convenient ways to indicate levels of statistical
significance. Normally, they represent:

• . = significant at 90% confidence level
• * = significant at 95% confidence level
• ** = significant at 99% confidence level
• *** = significant at 99.9% confidence level

While these are useful, for the assessment you will need to be able
to interpret the t-statistics and p-values, not just look for stars in
the tables!

52 / 56



Conclusion



What have we learned today?

1. Hypothesis tests can be used to evaluate the plausiblity of a
population parameter taking a certain value, given the data
we observe in our sample

2. Hypothesis tests and confidence intervals will always give the
same conclusion for the same confidence level

3. Regression estimates are computed from samples and so are
also subject to sampling variation

4. We need to consider regression standard errors, p-values, and
confidence intervals in our interpretations
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What have we learned this term?

PUBL0055 Introduction to Quantitative Methods is an
introduction to quantitative data analysis.

• Several commonly applied statistical methods for quantitative
analysis

• How to use R
• An introduction to quantitative (causal) analysis and thinking

about which methods are appropriate for which questions and
data
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What have we not learned this term?

• About other parts of the research process
• About qualitative data analysis
• About lots of quantitative methods, techniques (e.g., other

regression models, other causal inference designs, network
analysis, quantitative text analysis, spatial analysis)

• We have not talked a lot about measurement and the
statistical theory underlying data analysis

If you are interested in these topics, there are optional modules you
have access to!

• PUBL0050 (Causal Inference)
• PUBL0099 (Quantitative Text Analysis)
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Seminar

In seminars this week, you will learn to …

1. Conduct hypothesis tests
2. Construct confidence intervals
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