3.2 Solutions


You will need to load the core library for the course textbook:

library(ISLR)

3.2.1 Exercise

This question should be answered using the Weekly data set, which is part of the ISLR package. This data contains 1,089 weekly stock returns for 21 years, from the beginning of 1990 to the end of 2010.

  1. Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?
summary(Weekly)
      Year           Lag1               Lag2               Lag3         
 Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
 1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
 Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
 Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
 3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
 Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
      Lag4               Lag5              Volume       
 Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747  
 1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202  
 Median :  0.2380   Median :  0.2340   Median :1.00268  
 Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462  
 3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373  
 Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821  
     Today          Direction 
 Min.   :-18.1950   Down:484  
 1st Qu.: -1.1540   Up  :605  
 Median :  0.2410             
 Mean   :  0.1499             
 3rd Qu.:  1.4050             
 Max.   : 12.0260             
pairs(Weekly)

cor(subset(Weekly, select = -Direction))
              Year         Lag1        Lag2        Lag3         Lag4
Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
               Lag5      Volume        Today
Year   -0.030519101  0.84194162 -0.032459894
Lag1   -0.008183096 -0.06495131 -0.075031842
Lag2   -0.072499482 -0.08551314  0.059166717
Lag3    0.060657175 -0.06928771 -0.071243639
Lag4   -0.075675027 -0.06107462 -0.007825873
Lag5    1.000000000 -0.05851741  0.011012698
Volume -0.058517414  1.00000000 -0.033077783
Today   0.011012698 -0.03307778  1.000000000

Year and Volume appear to have a relationship. No other patterns are discernible.

  1. Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?
logit_model <- glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume,
                   data = Weekly,
                   family = binomial)
summary(logit_model)

Call:
glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
    Volume, family = binomial, data = Weekly)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.6949  -1.2565   0.9913   1.0849   1.4579  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)   
(Intercept)  0.26686    0.08593   3.106   0.0019 **
Lag1        -0.04127    0.02641  -1.563   0.1181   
Lag2         0.05844    0.02686   2.175   0.0296 * 
Lag3        -0.01606    0.02666  -0.602   0.5469   
Lag4        -0.02779    0.02646  -1.050   0.2937   
Lag5        -0.01447    0.02638  -0.549   0.5833   
Volume      -0.02274    0.03690  -0.616   0.5377   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 1496.2  on 1088  degrees of freedom
Residual deviance: 1486.4  on 1082  degrees of freedom
AIC: 1500.4

Number of Fisher Scoring iterations: 4

Lag2 appears to have some statistical significance with a p-value of less than 0.05

  1. Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

We’ll write two functions so we don’t have to copy/paste code all over the place:

  1. show_model_performance - Displays model performance.
  2. predict_glm_direction - Gets predictions as Up/Down class labels
# show confusion matrix from predicted class and observed class
show_model_performance <- function(predicted_status, observed_status) {
  confusion_matrix <- table(predicted_status, 
                            observed_status, 
                            dnn = c("Predicted Status", "Observed Status"))
  print(confusion_matrix)
  
  error_rate <- mean(predicted_status != observed_status)

  cat("\n") # \n means newline so it just prints a blank line
  cat("         Error Rate:", 100 * error_rate, "%\n")
  cat("Correctly Predicted:", 100 * (1-error_rate), "%\n")
  cat("False Positive Rate:", 100 * confusion_matrix[2,1] / sum(confusion_matrix[,1]), "%\n")
  cat("False Negative Rate:", 100 * confusion_matrix[1,2] / sum(confusion_matrix[,2]), "%\n")
}

# get prediction as Up/Down direction - only needed for GLM models
predict_glm_direction <- function(model, newdata = NULL) {
  predictions <- predict(model, newdata, type="response")
  return(as.factor(ifelse(predictions < 0.5, "Down", "Up")))
}

Now, all we need to do is call our functions to get the predictions and display model performance.

predicted_direction <- predict_glm_direction(logit_model)

show_model_performance(predicted_direction, Weekly$Direction)
                Observed Status
Predicted Status Down  Up
            Down   54  48
            Up    430 557

         Error Rate: 43.89348 %
Correctly Predicted: 56.10652 %
False Positive Rate: 88.84298 %
False Negative Rate: 7.933884 %
  1. Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).
train <- (Weekly$Year < 2009)
train_set <- Weekly[train, ]
test_set <- Weekly[!train, ]

logit_model <- glm(Direction ~ Lag2, data = Weekly, family = binomial, subset = train)

predicted_direction <- predict_glm_direction(logit_model, test_set)
show_model_performance(predicted_direction, test_set$Direction)
                Observed Status
Predicted Status Down Up
            Down    9  5
            Up     34 56

         Error Rate: 37.5 %
Correctly Predicted: 62.5 %
False Positive Rate: 79.06977 %
False Negative Rate: 8.196721 %
  1. Repeat (d) using LDA.
library(MASS)

lda_model <- lda(Direction ~ Lag2, data = Weekly, subset = train)

predictions <- predict(lda_model, test_set, type="response")
show_model_performance(predictions$class, test_set$Direction)
                Observed Status
Predicted Status Down Up
            Down    9  5
            Up     34 56

         Error Rate: 37.5 %
Correctly Predicted: 62.5 %
False Positive Rate: 79.06977 %
False Negative Rate: 8.196721 %
  1. Repeat (d) using QDA.
qda_model <- qda(Direction ~ Lag2, data = Weekly, subset = train)

predictions <- predict(qda_model, test_set, type="response")
show_model_performance(predictions$class, test_set$Direction)
                Observed Status
Predicted Status Down Up
            Down    0  0
            Up     43 61

         Error Rate: 41.34615 %
Correctly Predicted: 58.65385 %
False Positive Rate: 100 %
False Negative Rate: 0 %
  1. Repeat (d) using KNN with K = 1.
library(class)

run_knn <- function(train, test, train_class, test_class, k) {
  set.seed(12345)
  predictions <- knn(train, test, train_class, k)
  
  cat("KNN: k =", k, "\n")
  show_model_performance(predictions, test_class)
}
train_matrix <- as.matrix(train_set$Lag2)
test_matrix <- as.matrix(test_set$Lag2)

run_knn(train_matrix, test_matrix, train_set$Direction, test_set$Direction, k = 1)
KNN: k = 1 
                Observed Status
Predicted Status Down Up
            Down   21 29
            Up     22 32

         Error Rate: 49.03846 %
Correctly Predicted: 50.96154 %
False Positive Rate: 51.16279 %
False Negative Rate: 47.54098 %
  1. Which of these methods appears to provide the best results on this data?

Logistic regression and LDA methods provide similar test error rates.

  1. Experiment with different combinations of predictors, including possible transformations and interactions for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.
# Logistic regression with Lag1 * Lag2 interaction
logit_model <- glm(Direction ~ Lag1 * Lag2, data = Weekly, family = binomial, subset = train)

predicted_direction <- predict_glm_direction(logit_model, test_set)
show_model_performance(predicted_direction, test_set$Direction)
                Observed Status
Predicted Status Down Up
            Down    7  8
            Up     36 53

         Error Rate: 42.30769 %
Correctly Predicted: 57.69231 %
False Positive Rate: 83.72093 %
False Negative Rate: 13.11475 %
# LDA with Lag1 * Lag2 interaction
lda_model <- lda(Direction ~ Lag1 * Lag2, data = Weekly, subset = train)
predictions <- predict(lda_model, test_set, type="response")
show_model_performance(predictions$class, test_set$Direction)
                Observed Status
Predicted Status Down Up
            Down    7  8
            Up     36 53

         Error Rate: 42.30769 %
Correctly Predicted: 57.69231 %
False Positive Rate: 83.72093 %
False Negative Rate: 13.11475 %
# QDA with sqrt(abs(Lag2))
qda_model <- qda(Direction ~ Lag2 + sqrt(abs(Lag2)), data = Weekly, subset = train)
predictions <- predict(qda_model, test_set, type="response")
show_model_performance(predictions$class, test_set$Direction)
                Observed Status
Predicted Status Down Up
            Down   12 13
            Up     31 48

         Error Rate: 42.30769 %
Correctly Predicted: 57.69231 %
False Positive Rate: 72.09302 %
False Negative Rate: 21.31148 %
# KNN k =10
run_knn(train_matrix, test_matrix, train_set$Direction, test_set$Direction, k = 10)
KNN: k = 10 
                Observed Status
Predicted Status Down Up
            Down   18 21
            Up     25 40

         Error Rate: 44.23077 %
Correctly Predicted: 55.76923 %
False Positive Rate: 58.13953 %
False Negative Rate: 34.42623 %
# KNN k = 100
run_knn(train_matrix, test_matrix, train_set$Direction, test_set$Direction, k = 100)
KNN: k = 100 
                Observed Status
Predicted Status Down Up
            Down   10 13
            Up     33 48

         Error Rate: 44.23077 %
Correctly Predicted: 55.76923 %
False Positive Rate: 76.74419 %
False Negative Rate: 21.31148 %

Out of these permutations, the original LDA and logistic regression have better performance in terms of test error rate.

3.2.2 Exercise

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto dataset from the ISLR package.

  1. Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

We can use ifelse() to create a variable with values of 0 or 1, or we could just use the logical TRUE/FALSE which is even easier to create.

Auto$mpg01 <- Auto$mpg > median(Auto$mpg)

Now let’s see what mpg01 looks like:

head(Auto$mpg01, n = 20)
 [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[12] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
  1. Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.
cor(subset(Auto, select = -name))
                    mpg  cylinders displacement horsepower     weight
mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
mpg01         0.8369392 -0.7591939   -0.7534766 -0.6670526 -0.7577566
             acceleration       year     origin      mpg01
mpg             0.4233285  0.5805410  0.5652088  0.8369392
cylinders      -0.5046834 -0.3456474 -0.5689316 -0.7591939
displacement   -0.5438005 -0.3698552 -0.6145351 -0.7534766
horsepower     -0.6891955 -0.4163615 -0.4551715 -0.6670526
weight         -0.4168392 -0.3091199 -0.5850054 -0.7577566
acceleration    1.0000000  0.2903161  0.2127458  0.3468215
year            0.2903161  1.0000000  0.1815277  0.4299042
origin          0.2127458  0.1815277  1.0000000  0.5136984
mpg01           0.3468215  0.4299042  0.5136984  1.0000000
pairs(Auto) # not very useful since mpg01 is binary but let's see what we get

cylinders, weight, displacement, horsepower (and mpg itself) seem most likely to be useful in predicting mpg01

  1. Split the data into a training set and a test set.
train <- sample(nrow(Auto) * 0.7)
train_set <- Auto[train, ]
test_set <- Auto[-train, ]
  1. Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
lda_model <- lda(mpg01 ~ cylinders + weight + displacement + horsepower, 
                 data = Auto, 
                 subset = train)

predictions <- predict(lda_model, test_set)
show_model_performance(predictions$class, test_set$mpg01)
                Observed Status
Predicted Status FALSE TRUE
           FALSE    18   16
           TRUE      2   82

         Error Rate: 15.25424 %
Correctly Predicted: 84.74576 %
False Positive Rate: 10 %
False Negative Rate: 16.32653 %
  1. Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
qda_model <- qda(mpg01 ~ cylinders + weight + displacement + horsepower, 
                 data = Auto, 
                 subset = train)

predictions <- predict(qda_model, test_set)
show_model_performance(predictions$class, test_set$mpg01)
                Observed Status
Predicted Status FALSE TRUE
           FALSE    18   19
           TRUE      2   79

         Error Rate: 17.79661 %
Correctly Predicted: 82.20339 %
False Positive Rate: 10 %
False Negative Rate: 19.38776 %
  1. Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?
logit_model <- glm(mpg01 ~ cylinders + weight + displacement + horsepower, 
                   data = Auto, 
                   family = binomial,
                   subset = train)

predictions <- predict(logit_model, test_set, type = "response")
show_model_performance(predictions > 0.5, test_set$mpg01)
                Observed Status
Predicted Status FALSE TRUE
           FALSE    20   21
           TRUE      0   77

         Error Rate: 17.79661 %
Correctly Predicted: 82.20339 %
False Positive Rate: 0 %
False Negative Rate: 21.42857 %
  1. Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?
vars <- c("cylinders", "weight", "displacement", "horsepower")
train_matrix <- as.matrix(train_set[, vars])
test_matrix <- as.matrix(test_set[, vars])

predictions <- knn(train_matrix, test_matrix, train_set$mpg01, 1)

run_knn(train_matrix, test_matrix, train_set$mpg01, test_set$mpg01, k = 1)
KNN: k = 1 
                Observed Status
Predicted Status FALSE TRUE
           FALSE    18   24
           TRUE      2   74

         Error Rate: 22.0339 %
Correctly Predicted: 77.9661 %
False Positive Rate: 10 %
False Negative Rate: 24.4898 %
run_knn(train_matrix, test_matrix, train_set$mpg01, test_set$mpg01, k = 10)
KNN: k = 10 
                Observed Status
Predicted Status FALSE TRUE
           FALSE    20   22
           TRUE      0   76

         Error Rate: 18.64407 %
Correctly Predicted: 81.35593 %
False Positive Rate: 0 %
False Negative Rate: 22.44898 %
run_knn(train_matrix, test_matrix, train_set$mpg01, test_set$mpg01, k = 100)
KNN: k = 100 
                Observed Status
Predicted Status FALSE TRUE
           FALSE    20   25
           TRUE      0   73

         Error Rate: 21.18644 %
Correctly Predicted: 78.81356 %
False Positive Rate: 0 %
False Negative Rate: 25.5102 %

3.2.3 Exercise

This problem involves writing functions.

  1. Write a function calc_square(), that returns the result of raising a number to the 2nd power. For example, calling calc_square(5) should return the result of \(5^2\) or 25.

    Hint: Recall that x^a raises x to the power a. Use the print() function to output the result.

calc_square <- function(x) {
  return(x^2)
}

We can test our function like this:

calc_square(3)
[1] 9
calc_square(5)
[1] 25
  1. Write a new function calc_power(), that allows you to pass any two numbers, x and a, and prints out the value of x^a. For example, you should be able to call calc_power(3,8) and your function should return \(3^8\) or 6561.
calc_power <- function(x,a) {
  return(x^a)
}
  1. Using the calc_power() function that you just wrote, compute \(10^3\), \(8^{17}\), and \(131^3\).
calc_power(10, 3)
[1] 1000
calc_power(8, 17)
[1] 2.2518e+15
calc_power(131, 3)
[1] 2248091
  1. Now using the calc_power() function, create a plot of \(f(x) = x^2\). The \(x\)-axis should display a range of integers from 1 to 10, and the \(y\)-axis should display \(x^2\). Label the axes appropriately, and use an appropriate title for the figure. Consider displaying either the \(x\)-axis, the \(y\)-axis, or both on the log-scale. You can do this by using log="x", log="y", or log="xy" as arguments to the plot() function.
x <- 1:10
plot(x, calc_power(x, 2),  
     log="xy", ylab="Log of y = x^2", xlab="Log of x", 
     main="Log of x^2 versus Log of x")

  1. Write a function plot_power(), that allows you to create a plot of x against x^a for a fixed a and for a range of values of x. For instance:
plot_power <- function(x, a) {
  plot(x, calc_power(x, a))
}

The result should be a plot with an \(x\)-axis taking on values \(1,2,\dots ,10\), and a \(y\)-axis taking on values \(1^3,2^3,\dots ,10^3\).

plot_power(1:10, 3)